簡易檢索 / 詳目顯示

研究生: 黃品升
Huang, Pin-sheng
論文名稱: 利用植物熱休克蛋白HSP101來提升外源蛋白質轉譯能力之研究
Translational enhancement of foreign protein expression by HSP101
指導教授: 張清俊
Chang, Ching-Chun
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 148
中文關鍵詞: 轉譯活化子植物熱休克蛋白菸草鑲嵌病毒Ω序列轉譯增強子
外文關鍵詞: HSP101, tobacco mosaic virus Ω sequence, translational enhancer, translational activator
相關次數: 點閱:187下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用植物基因工程技術將外源基因轉入植物中,以植物做為生物反應器來大量生產所需蛋白質,具有成本低,可大量種植等優點。可食性疫苗、抗體、各種醫療或工業用蛋白質酵素等,皆可藉由基因工程方式利用植物來生產獲得,但由於以植物基因轉殖方式生產外源蛋白質具有表現量不高的情形,所以一直無法被廣泛地應用來大量生產蛋白質。
    本研究欲藉由在構築轉基因時加入一段菸草鑲嵌病毒的5’-UTR來提升其後轉基因的蛋白質表現量。菸草鑲嵌病毒RNA 5’-UTR中有一段約68 base的序列,稱為Ω序列,可提升mRNA轉譯效率,而HSP101可以結合在Ω序列上,吸引轉譯因子聚集,進而形成轉譯起始複合物,提升蛋白質轉譯效率,其中HSP101扮演著轉譯活化子的角色。本實驗主要探討證實水稻的HSP101與菸草鑲嵌病毒Ω序列在植物體中是否同樣具有提升轉譯效率的能力。
    本論文透過菸草原生質體和轉殖植株授粉雜交兩種層次來進一步證實菸草鑲嵌病毒的Ω序列,提升其後基因轉譯效率的能力是否與HSP101的參與有關。在菸草原生質體實驗部分,我們將帶有Ω序列與luciferase 報導基因(Ω-luciferase)的質體,透過電穿孔(electroporation)的方式,送入野生型或大量表現水稻HSP101之菸草原生質體(protoplast)中,偵測luciferase 表現量與HSP101表現量之相關性,進一步研究菸草鑲嵌病毒Ω序列與HSP101的關係。在轉殖植株授粉雜交部分,我們利用農桿菌轉殖法,將具有Ω-luciferase報導基因的DNA轉殖入菸草中,將三個Ω-luciferase的同質純系轉殖品系與六個可大量表現水稻HSP101之同質純系轉殖品系,與一個品系的家禽里奧病毒S1鞘蛋白轉殖菸草及未轉殖植株,進行授粉雜交實驗,之後測試雜交後子代其luciferase表現量並加以分析,實驗結果顯示,部分雜交後子代其luciferase表現量有提升,說明了水稻HSP101可提升具有Ω序列之報導基因(luciferase)表現量。在基因轉殖菸草植物體in planta層面,證實了在有大量水稻HSP101的存在下,可進一步提升Ω序列增進外源蛋白質轉譯效率之能力。

    Transgenic plants have been generated as bioreactors to produce proteins. The advantages of plant bioreactors include low-cost, easily and extensively cultivation. Edible vaccine, antibodies, and the therapeutical or industrial proteins, all of them have been produced by plant genetic engineering. However, the protein expression level in transgenic plant are low, and this is the reason to limit the development of plant as bioreactors.

    In previous study, the 68 base of TMV 5’-UTR called the Ω sequence, is able to promote the translational efficiency. The plant HSP101 can bind to the Ω sequence and recruit the translational initiation factors to enhance the translational activity of RNA transcripts. In this study we investigated the HSP101 overexpression lines in regulation of Ω-reporter gene expression in planta as well as in protoplast.

    In protoplast aspect, we used the electroporation method to deliver the Ω sequence and luciferase gene to the tobacco protoplasts and study the relationship of reporter gene (luciferase) expression level with HSP101. In our study, Ω sequence enhance luciferase expression level about 7~12 fold in OsHSP101 overexpressed tobacco protoplasts.

    In planta aspect, we had transformed tobacco with Ω-luciferase expression cassette by Agrobacterium-mediated transformation. Tree Ω-luciferase transgenic tobacco lines were obtained. We crossed the Ω-luciferase transgenic plants with HSP101 overexpression lines or wild type plants, and analyzed luciferase activity in the progenies. The results shown that OsHSP101 can enhance the reporter gene expression with Ω sequence in the 5’-UTR.

    第一章、前言................................................1 第二章、文獻探討............................................4 一、外源蛋白表現量之提升....................................4 1. 轉錄層級(transcription level)..........................4 2. 轉錄後層級(post-transcription level)...................6 3. 蛋白質層級(protein level)............................. 9 二、菸草鑲嵌病毒(TMV)....................................10 1. 菸草鑲嵌病毒介紹........................................11 2. Ω 序列具有提升轉譯效率之能力............................12 三、植物熱休克蛋白HSP101...................................12 1. 植物HSP101的特性........................................13 2. HSP101與植物熱逆境......................................13 四、HSP101具有轉譯活化子的特性............................ 16 1. Ω序列為轉譯增強子...................................... 16 2. HSP101可結合至Ω序列為轉譯活化子.........................16 3. 植物HSP101與菸草鑲嵌病毒之關係......................... 18 五、研究目的.............................................. 19 1. 利用大量表現HSP101來提升外源蛋白之表現量................19 2. 利用Ω序列大量提高外源蛋白質表現量.......................20 第三章、材料與方法........................................ 22 1. 實驗材料................................................22 2. 實驗方法................................................22 2.1 植物基因轉殖載體的構築.................................22 2.2 構築表現載體所使用的方法...............................25 2.3 菸草基因轉殖...........................................33 2.4 基因轉殖植株之篩選.....................................36 2.5 冷光測定儀偵測luciferase表現量........................ 40 2.6 獲得同質純系的轉殖植株(homozygous lines).............. 41 2.7 基因轉殖植株基因體的分析...............................42 2.8 偵測蛋白質表現量.......................................46 3. 基因轉殖植株雜交實驗....................................49 3.1 基因轉殖植株雜交後子代之分析...........................49 4. 電穿孔法遞送DNA/RNA進入菸草原生質體.....................50 4.1 電穿孔法遞送DNA進入菸草原生質體........................50 4.2 電穿孔法遞送RNA進入菸草原生質體........................52 第四章、實驗結果.......................................... 54 1. 獲得持續性大量表現luciferase之菸草轉殖品系..............54 1.1 獲得含有Ω序列持續大量表現luciferase轉殖品系............54 1.2 獲得持續大量表現luciferase 轉殖品系....................55 2. 南方墨點法分析轉殖植株之結果............................55 3. 西方墨點法分析轉殖植株之結果............................56 4. 基因轉殖植株雜交實驗結果................................56 4.1以Ω-Luc repoter lines為雄株雜交結果.....................56 4.2以Ω-Luc repoter lines為雌株雜交結果.....................61 5.利用電穿孔將DNA/RNA遞送入菸草原生質體................... 66 5.1. DNA delivery實驗結果................................. 66 5.2. RNA delivery實驗結果................................. 67 第五章、討論...............................................68 一、菸草鑲嵌病毒Ω序列的部分差異並不影響其功能..............68 二、水稻HSP101是否可提升具有Ω序列之外源蛋白表現量..........69 三、植物體中以Ω序列與水稻HSP101提升外源蛋白表現量 之可行性...............................................70 四、在Ω-Luc repoter line對其他植株進行授粉雜交實驗中,其 HSP101與luciferase表現量之相關性不盡理想...............71 五、以Ω-Luc reporter lines為雄株或雌株進行授粉雜交後其 子代luciferase表現量有差異.............................72 六、轉殖植株中各外源基因的表現量並非正相關.................73 七、部分基因轉殖植株生長異常...............................75 第六章、參考文獻...........................................76 附錄一、以葉綠體基因轉殖法在菸草葉綠體中大量表現外源 蛋白質............................................123 附錄二、藥品與溶液配方....................................138 附錄三、菸草原生質體(protoplast)數目計數方式............147 圖目錄 圖1、pJD301質體結構圖....................................81 圖2、pHSP101質體結構圖...................................82 圖3、pH-ΩLuc質體結構圖...................................83 圖4、pC-Ω-Luc 轉殖載體示意圖.............................84 圖5、pC –Luc 轉殖載體示意圖.............................85 圖6、pBSK-Luc質體結構圖..................................86 圖7、pBSK-Luc(35S-)質體結構圖............................87 圖8、pBSK-Ω-Luc(35S-)質體結構圖..........................88 圖9、pBI-121質體結構圖...................................89 圖10、pBSK-GUS質體結構圖.................................90 圖11、pBSK-GUS(35S-)質體結構圖...........................91 圖12、以PCR檢測pC-Ω-luc菸草轉殖植株的基因體中是否 含有kanamycin resistance基因.......................92 圖13、以PCR檢測pC-luc菸草轉殖植株的基因體中是否 含有kanamycin resistance基因.......................93 圖14、pC-Ω-luc轉殖植株GUS組織染色結果....................94 圖15、pC-luc轉殖植株GUS組織染色結果......................95 圖16、偵測pC-Ω-luc轉殖植株luciferase蛋白質表現...........96 圖17、偵測pC-luc轉殖植株luciferase蛋白質表現.............97 圖18、利用PCR合成DIG標定之luciferase探針.................98 圖19、以南方墨點法偵測菸草轉殖植株之基因體中luciferase gene 之存在.............................................99 圖20、以西方墨點法分析pC-Ω-luc與pC-luc轉殖品系中 luciferase之表現量................................100 圖21、分析以Ω-Luc 2-3轉殖植物為雄株的雜交子代其luciferase 之表現量..........................................101 圖22、分析以Ω-Luc 4-2轉殖植物為雄株的雜交子代其luciferase 之表現量..........................................104 圖23、分析以Ω-Luc 6-4轉殖植物為雄株的雜交子代其luciferase 之表現量..........................................107 圖24、分析以Ω-Luc 2-3轉殖植物為雌株的雜交子代其luciferase 之表現量..........................................110 圖25、分析以Ω-Luc 4-2轉殖植物為雌株的雜交子代其luciferase 之表現量..........................................113 圖26、分析以Ω-Luc 6-4轉殖植物為雌株的雜交子代其luciferase 之表現量..........................................116 圖27、暫時性表現有或無Ω序列之luciferase表現載體於菸草 原生質體..........................................119 圖28、暫時性表現有或無Ω序列之luciferase表現載體於菸草 原生質體..........................................120 表目錄 表一、本論文所使用的引子................................121 表二、Ω序列比較表.......................................121 表三、七種物種間HSP101序列之相同度......................122

    呂俊賢 (2004) 植物熱休克蛋白質HSP101的應用性研究. 國立成功大學生物科技研究所碩士論文

    林惠茹 (2005) 大量表現熱休克蛋白質HSP101以提升菸草耐熱性之研究. 國立成功大學生物科技研究所碩士論文

    黃亮愷 (2005) 以植物生產家禽里奧病毒之可食性疫苗 國立成功大學生物科技研究所碩士論文

    Adams, S., Vinkenoog, R., Spielman, M., Dickinson, H.G., Scott, R.J., 2000. Parent-of-origin effects on seed development in Arabidopsis thaliana require DNA methylation. Development 127: 2493-2502

    Agarwal, M., Katiyar-Agarwal S., Sahi, C., Gallie, D.R., Grover, A., 2001. Arabidopsis thaliana Hsp100 proteins : kith and kin. Cell Stress Chaperones 6 : 219-224

    Agarwal, M., Sahi, C., Katiyar-Agarwal, S., Agarwal, S., Young, T., Gallie, D.R., Sharma, V.M., Ganesan, K., Grover, A., 2003. Molecular characterization of rice hsp101: complementation of yeast hsp104 mutation by disaggregation of protein granules and differential expression in indica and japonica rice types. Plant Mol Biol 51: 543-553

    Aparicio, F., Thomas, C.L., Lederer, C., Niu, Y., Wang, D., Maule, A.J., 2005. Virus induction of heat shock protein 70 reflects a general response to protein accumulation in the plant cytosol. Plant Physiol. 138 : 529-536

    Aranda, M.A., Escaler, M., Wang, D., Maule, A.J., 1996. Induction of HSP70 and polyubiquitin expression associated with plant virus replication. Proc. Natl. Acad. Sci. U.S.A. 93 : 15289-15293

    Ashraf, S., Singh, P. K., Yadav, D. K., Shahnawaz, Md., Mishra, S., Sawant, S. V., Tuli, R., 2005. High level expression of surface glycoprotein of rabies virus in tobacco leaves and its immunoprotective activity in mice. Journal of Biotechnology 199 : 1-14

    Cornelissen, B.J.C., Van Huijsduijnen, R.A.M.H., Van Loon, L.C., Bol, J.F., 1986. Molecular characterization of messenger RNAs for pathogenesis-related proteins 1a, 1b, and 1c, induced by TMV infection of tobacco. EMBO J. 5 : 37-40

    Daniell, H., 1997. Transformation and foreign gene expression in plants by microprojectile bombardment. Methods Mol Biol. 62 : 463-489

    Daniell, H., Lee, S. B., Panchal, T., Wiebe, P. O., 2001(a). Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J. Mol. Biol. 311: 1001-1009

    Daniell, H., Streatfield, S. J., Wycoff, K., 2001 (b). Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci. 6 : 219-226

    Dansako, T., Kato, K., Satoh, J., Sekine, M., Yoshida, K., and Shinmyo, A., 2003. 5’ Untranslated region of the HSP18.2 gene contributes to efficient translation in plant cells. J. Biosci. Bioeng. 95 : 52-58

    Dai, Z., Hooker, B.S., Quesenberry, R.D., Thomas, S.R., 2005. Optimization of Acidothermus cellulolyticus endoglucanase (E1) production in transgenic tobacco plants by transcriptional, post-transcription and post-translational modification. Transgenic Research 14 : 627–643

    Gallie, D.R., Sleat, D.E., Watts, J.W., Turner, P.C., Wilson, T.M., 1987. A comparison of eukaryotic viral 5'-leader sequences as enhancers of mRNA expression in vivo. Nucleic Acids Res. 15: 8693-8711

    Gallie, D. R., Sleat, D. E., Watts, J. W., Turner, P. C., Wilson, T. M., 1988. Mutational analysis of the tobacco mosaic virus 5'-leader for altered ability to enhance translation. Nucleic Acids Res. 16 : 883-893

    Gallie, D.R., Walbot, V., and Hershey, J. W. B., 1988. The ribosomal fraction mediates the translational enhancement associated with the 5'-leader of tobacco mosaic virus. Nucleic Acids Res. 16 : 8675-8694

    Gallie, D.R.,Lucas, W.J., and Walbot, V., 1989. Visualizing mRNA expression in plant protoplasts:factors influencing efficient mRNA uptake and translation. Plant Cell 1 : 301-311

    Gallie, D.R., Feder, J.N., Schimke, R.T., Walbot, V., 1991. Post-transcriptional regulation in higher eukaryotes: the role of the reporter gene in controlling expression. Mo.l Gen. Genet. 228 : 258-264

    Gallie, D.R., Walbot, V., 1992. Identification of the motifs within the tobacco mosaic virus 5'-leader responsible for enhancing translation. Nucleic Acids Res. 20 : 4631-4638

    Gallie, D.R., Caldwell C, Pitto L, 1995. Heat shock disrupts cap and poly(A) tail function during translation and increases mRNA stability of introduced reporter mRNA. Plant Physiol. 108: 1703-1713

    Gallie, D.R., Fortner, D., Peng, J., Puthoff, D., 2002. ATP-dependent hexameric assembly of the heat shock protein Hsp101 involves multiple interaction domains and a functional C-proximal nucleotide-binding domain. J. Biol. Chem. 277: 39617-39626

    Gallie, D.R., 2002. The 5'-leader of tobacco mosaic virus promotes translation through enhanced recruitment of eIF4F. Nucleic Acids Res. 30: 3401-3411

    Giddings, G., Allison, G., Brokks, D. and Carter, A., 2001. Transgenic plants as factories for biopharmaceuticals. Nat. Biotechnol. 18 : 1151-1155

    Glaser, E., Sjoling, S., Tanudji, M. and Whelan, J., 1998. Mitochondrial protein import in plants. Signals, sorting, targeting, processing and regulation. Plant Mol Biol. 38 : 311-338

    Goelet, P., Lomonossoff, G. P., Butler, P. J., Akam, M. E., Gait, M. J., Karn, J., 1982. Nucleotide sequence of tobacco mosaic virus RNA .Proc. Natl. Acad. Sci. USA 79 : 5818-5822

    Gurley, W.B., 2000. HSP101: a key component for the acquisition of thermotolerance in plants. Plant Cell 12: 457-460

    Haseloff, J., Siemering, K. R., Prasher, D. C., Hodge, S., 1997. Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc. Natl. Acad. Sci. USA 94 : 2122-2127

    Holmberg, N., Farrés J., Bailey, J. E., Kallio P. T., 2001. Targeted expression of a synthetic codon optimized gene, encoding the spruce budworm antifreeze protein, leads to accumulation of antifreeze activity in the apoplasts of transgenic tobacco. Gene 275 : 115-124

    Jagtap, V., Bhargava, S., Streb, P., Feierabend, J., 1998. Comparative effect of water, heat and light stresses on photosynthetic reactions in Sorghum bicolor (L.) Moench. J. Exp. Bot. 49: 1715-1721

    Kamura, N., Sawasaki, T., Kasahara, Y., Takai, K., Endo, Y., 2005. Selection of 5’-untranslated sequences that enhance initiation of translation in a cell-free protein synthesis from wheat embryos. Bioorganic & Medicinal Chemistry Letters 15: 5402-5406

    Lee, J.H., and Schoffl, F., 1996. An Hsp 70 antisence gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in transgenic Arabidopsis thaliana. Molecular and General Genetics 252 : 11-19

    Ling, J., Wells, D.R., Tanguay, R.L., Dickey, L.F., Thompson, W.F., Gallie, D.R., 2000. Heat shock protein HSP101 Binds to the Fed-1 internal light regulatory element and mediates its high translational activity. The Plant Cells 12 : 1213-1227

    Luehrsen, K. R., Walbot, V., 1993. Firefly luciferase as a reporter for plant gene expression studies. Promega Notes Magazine number 44, Nov. p.24

    Lutz Nover K. B., Pascal D., Shravan K. M., Arnab G., and Klaus-Dieter S., 2001. Arabidopsis and the Hsf world: how many heat stress transcription factors do we need? Cell Stress Chaperones 6 : 177-189

    Mason, H. S., Haq, T. A., Clements, J. D. and Arntzen, C. J., 1998. Edible vaccine protects mice against Escherichia coli heat-labile enterotoxin (LT) : potatoes expressing a synthetic LT-B gene. Vaccine 16 : 133-1343

    Menassa, R., Jevnikar, A. and Brandle, J., 2001 .A contained system for the field production of plant recombinant proteins. In Molecular Farming. Eds. Toutant JP and Balazs E, INRA Editions, Versailles, France, 197-205

    Morimoto, R.I., Tissieres, A., Georgopoulos, C., 1994. The Biology of Heat Shock Proteins and Molecular Chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Napier, J.A., Richard, C., Shewry, P.R., 1998. Trafficking and stability of heterologous proteins in transgenic plants. Meth. Biotechnol. 3 : 189-202

    Nieto-Sotelo, J., Martinez, L.M., Ponce, G., Cassab, G.I., Alagon, A., Meeley, R.B., Ribaut, J.M., Yang, R., 2002. Maize HSP101 plays important roles in both induced and basal thermotolerance and primary root growth. Plant Cell 14: 1621-1633

    Osteryoung, K.W., Sundberg, H., Vierling, E., 1993. Poly(A) tail length of a heat shock protein RNA is increased by severe heat stress, but intron splicing is unaffected. Mol. Gen. Genet. 239 : 323-333

    Sala, F., Rigano, M. M., Barbante A., Basso, B., Walmsley, A. M., Castiglione, S., 2003. Vaccine antigen production in transgenic plants: strateagies, gene constructs and perspectives. Vaccine 21 : 803-808

    Satoh, J., Kato K.,Shinmyo A., 2004. The 5’-untranslated region of the tobacco alcohol dehydrogenase gene functions as an effective translational enhancer in plant. Journal of Bioscience and Bioengineering 98 : 1-8

    Schirmer, E.C., Lindquist, S., Vierling, E., 1994. An Arabidopsis heat shock protein complements a thermotolerance defect in yeast. Plant Cell 6: 1899-1909

    Schouten, A., Roosien J., van Engelen, F.A., de Jong, G.A., Borst-Vrenssen, A.W., Zilverentant, J.F., Bosch D., Stiekema, W.J., Gommers, F.J., Schots, A., Bakker, J., 1996. The C-terminal KDEL sequence increases the expression level of a single-chain antibody designed to be targeted to both the cytosol and the secretory pathway in transgenic tobacco. Plant Mol. Biol. 30 : 781-793

    Sijmon, P.C., Dekker, B.M.M., Schrammeijer, B., Verwoerd, T.C., vanden Elzen, P.J.M., Hoekema, A., 1990. Production of correctly processed human serum albumin in transgenic plants. Biotechnology 8, 217-221

    Stoger, E., Vaquero, C., Torres, E., Sack, M., Nicholsonm L., Drossard, J., 2000. Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Mol. Biol. 42 : 583-590

    Tackaberry, E. S, Dudani, A. K, Prior, F, Tocchi, M, Sardana, R, Altosaar, I, Ganz, P. R, 1999. Development of biopharmaceuticals in plant expression systems: cloning, expression and immunological reactivity of human cytomegalovirus glycoprotein B (UL55) in seeds of transgenic tobacco. Vaccine 17 : 3020-3029

    Tanguay, R. L., Gallie, D. R., 1996. Isolation and characterization of the 102-kilodalton RNA-binding protein that binds to the 5' and 3' translational enhancers of tobacco mosaic virus RNA. J. Biol. Chem. 271 : 14316-14322

    Visioli G, Maestri E, Marmiroli N, 1997. Differential display-mediated isolation of a genomic sequence for a putative mitochondrial LMW HSP specifically expressed in condition of induced thermotolerance in Arabidopsis thaliana (L) Heynh. Plant Mol. Biol. 34 : 517-527

    Wells, D.R., Tanguay, R.L., Le, H., Gallie, D.R., 1998. HSP101 functions as a specific translational regulatory protein whose activity is regulated by nutrient status. Genes Dev. 12 : 3236-3251

    Whitham, S.A., Quan, S., Chang, H.S., Cooper, B., Estes, B., Zhu, T., Wang, X., Hou, Y.M., 2003. Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants. Plant J. 33 : 271-283

    Xie, X.B., Cui, H.R., Shen, S.Q., Wu, D.X., Xia, Y.W., Shu, Q.Y., 2002. Studies on the distorted segregation of foreign genes in transgenic rice progenies. Yi Chuan Xue Bao 29(11): 1005-1011

    Yang, D., Guo, F., Liu, B., Huang, N., Watkins, S.C., 2003. Expression and localization of human lysozyme in the endosperm of transgenic rice. Planta 216: 597–603

    Zeyenko, V.V., Ryabova, L.A., Gallie, D.R., Spirin, A.S., 1994. Enhancing effect of the 3'-untranslated region of tobacco mosaic virus RNA on protein synthesis in vitro.
    FEBS Lett. 354 : 271-273

    下載圖示 校內:2009-02-07公開
    校外:2009-02-07公開
    QR CODE