| 研究生: |
黃品升 Huang, Pin-sheng |
|---|---|
| 論文名稱: |
利用植物熱休克蛋白HSP101來提升外源蛋白質轉譯能力之研究 Translational enhancement of foreign protein expression by HSP101 |
| 指導教授: |
張清俊
Chang, Ching-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 148 |
| 中文關鍵詞: | 轉譯活化子 、植物熱休克蛋白 、菸草鑲嵌病毒Ω序列 、轉譯增強子 |
| 外文關鍵詞: | HSP101, tobacco mosaic virus Ω sequence, translational enhancer, translational activator |
| 相關次數: | 點閱:187 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用植物基因工程技術將外源基因轉入植物中,以植物做為生物反應器來大量生產所需蛋白質,具有成本低,可大量種植等優點。可食性疫苗、抗體、各種醫療或工業用蛋白質酵素等,皆可藉由基因工程方式利用植物來生產獲得,但由於以植物基因轉殖方式生產外源蛋白質具有表現量不高的情形,所以一直無法被廣泛地應用來大量生產蛋白質。
本研究欲藉由在構築轉基因時加入一段菸草鑲嵌病毒的5’-UTR來提升其後轉基因的蛋白質表現量。菸草鑲嵌病毒RNA 5’-UTR中有一段約68 base的序列,稱為Ω序列,可提升mRNA轉譯效率,而HSP101可以結合在Ω序列上,吸引轉譯因子聚集,進而形成轉譯起始複合物,提升蛋白質轉譯效率,其中HSP101扮演著轉譯活化子的角色。本實驗主要探討證實水稻的HSP101與菸草鑲嵌病毒Ω序列在植物體中是否同樣具有提升轉譯效率的能力。
本論文透過菸草原生質體和轉殖植株授粉雜交兩種層次來進一步證實菸草鑲嵌病毒的Ω序列,提升其後基因轉譯效率的能力是否與HSP101的參與有關。在菸草原生質體實驗部分,我們將帶有Ω序列與luciferase 報導基因(Ω-luciferase)的質體,透過電穿孔(electroporation)的方式,送入野生型或大量表現水稻HSP101之菸草原生質體(protoplast)中,偵測luciferase 表現量與HSP101表現量之相關性,進一步研究菸草鑲嵌病毒Ω序列與HSP101的關係。在轉殖植株授粉雜交部分,我們利用農桿菌轉殖法,將具有Ω-luciferase報導基因的DNA轉殖入菸草中,將三個Ω-luciferase的同質純系轉殖品系與六個可大量表現水稻HSP101之同質純系轉殖品系,與一個品系的家禽里奧病毒S1鞘蛋白轉殖菸草及未轉殖植株,進行授粉雜交實驗,之後測試雜交後子代其luciferase表現量並加以分析,實驗結果顯示,部分雜交後子代其luciferase表現量有提升,說明了水稻HSP101可提升具有Ω序列之報導基因(luciferase)表現量。在基因轉殖菸草植物體in planta層面,證實了在有大量水稻HSP101的存在下,可進一步提升Ω序列增進外源蛋白質轉譯效率之能力。
Transgenic plants have been generated as bioreactors to produce proteins. The advantages of plant bioreactors include low-cost, easily and extensively cultivation. Edible vaccine, antibodies, and the therapeutical or industrial proteins, all of them have been produced by plant genetic engineering. However, the protein expression level in transgenic plant are low, and this is the reason to limit the development of plant as bioreactors.
In previous study, the 68 base of TMV 5’-UTR called the Ω sequence, is able to promote the translational efficiency. The plant HSP101 can bind to the Ω sequence and recruit the translational initiation factors to enhance the translational activity of RNA transcripts. In this study we investigated the HSP101 overexpression lines in regulation of Ω-reporter gene expression in planta as well as in protoplast.
In protoplast aspect, we used the electroporation method to deliver the Ω sequence and luciferase gene to the tobacco protoplasts and study the relationship of reporter gene (luciferase) expression level with HSP101. In our study, Ω sequence enhance luciferase expression level about 7~12 fold in OsHSP101 overexpressed tobacco protoplasts.
In planta aspect, we had transformed tobacco with Ω-luciferase expression cassette by Agrobacterium-mediated transformation. Tree Ω-luciferase transgenic tobacco lines were obtained. We crossed the Ω-luciferase transgenic plants with HSP101 overexpression lines or wild type plants, and analyzed luciferase activity in the progenies. The results shown that OsHSP101 can enhance the reporter gene expression with Ω sequence in the 5’-UTR.
呂俊賢 (2004) 植物熱休克蛋白質HSP101的應用性研究. 國立成功大學生物科技研究所碩士論文
林惠茹 (2005) 大量表現熱休克蛋白質HSP101以提升菸草耐熱性之研究. 國立成功大學生物科技研究所碩士論文
黃亮愷 (2005) 以植物生產家禽里奧病毒之可食性疫苗 國立成功大學生物科技研究所碩士論文
Adams, S., Vinkenoog, R., Spielman, M., Dickinson, H.G., Scott, R.J., 2000. Parent-of-origin effects on seed development in Arabidopsis thaliana require DNA methylation. Development 127: 2493-2502
Agarwal, M., Katiyar-Agarwal S., Sahi, C., Gallie, D.R., Grover, A., 2001. Arabidopsis thaliana Hsp100 proteins : kith and kin. Cell Stress Chaperones 6 : 219-224
Agarwal, M., Sahi, C., Katiyar-Agarwal, S., Agarwal, S., Young, T., Gallie, D.R., Sharma, V.M., Ganesan, K., Grover, A., 2003. Molecular characterization of rice hsp101: complementation of yeast hsp104 mutation by disaggregation of protein granules and differential expression in indica and japonica rice types. Plant Mol Biol 51: 543-553
Aparicio, F., Thomas, C.L., Lederer, C., Niu, Y., Wang, D., Maule, A.J., 2005. Virus induction of heat shock protein 70 reflects a general response to protein accumulation in the plant cytosol. Plant Physiol. 138 : 529-536
Aranda, M.A., Escaler, M., Wang, D., Maule, A.J., 1996. Induction of HSP70 and polyubiquitin expression associated with plant virus replication. Proc. Natl. Acad. Sci. U.S.A. 93 : 15289-15293
Ashraf, S., Singh, P. K., Yadav, D. K., Shahnawaz, Md., Mishra, S., Sawant, S. V., Tuli, R., 2005. High level expression of surface glycoprotein of rabies virus in tobacco leaves and its immunoprotective activity in mice. Journal of Biotechnology 199 : 1-14
Cornelissen, B.J.C., Van Huijsduijnen, R.A.M.H., Van Loon, L.C., Bol, J.F., 1986. Molecular characterization of messenger RNAs for pathogenesis-related proteins 1a, 1b, and 1c, induced by TMV infection of tobacco. EMBO J. 5 : 37-40
Daniell, H., 1997. Transformation and foreign gene expression in plants by microprojectile bombardment. Methods Mol Biol. 62 : 463-489
Daniell, H., Lee, S. B., Panchal, T., Wiebe, P. O., 2001(a). Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J. Mol. Biol. 311: 1001-1009
Daniell, H., Streatfield, S. J., Wycoff, K., 2001 (b). Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci. 6 : 219-226
Dansako, T., Kato, K., Satoh, J., Sekine, M., Yoshida, K., and Shinmyo, A., 2003. 5’ Untranslated region of the HSP18.2 gene contributes to efficient translation in plant cells. J. Biosci. Bioeng. 95 : 52-58
Dai, Z., Hooker, B.S., Quesenberry, R.D., Thomas, S.R., 2005. Optimization of Acidothermus cellulolyticus endoglucanase (E1) production in transgenic tobacco plants by transcriptional, post-transcription and post-translational modification. Transgenic Research 14 : 627–643
Gallie, D.R., Sleat, D.E., Watts, J.W., Turner, P.C., Wilson, T.M., 1987. A comparison of eukaryotic viral 5'-leader sequences as enhancers of mRNA expression in vivo. Nucleic Acids Res. 15: 8693-8711
Gallie, D. R., Sleat, D. E., Watts, J. W., Turner, P. C., Wilson, T. M., 1988. Mutational analysis of the tobacco mosaic virus 5'-leader for altered ability to enhance translation. Nucleic Acids Res. 16 : 883-893
Gallie, D.R., Walbot, V., and Hershey, J. W. B., 1988. The ribosomal fraction mediates the translational enhancement associated with the 5'-leader of tobacco mosaic virus. Nucleic Acids Res. 16 : 8675-8694
Gallie, D.R.,Lucas, W.J., and Walbot, V., 1989. Visualizing mRNA expression in plant protoplasts:factors influencing efficient mRNA uptake and translation. Plant Cell 1 : 301-311
Gallie, D.R., Feder, J.N., Schimke, R.T., Walbot, V., 1991. Post-transcriptional regulation in higher eukaryotes: the role of the reporter gene in controlling expression. Mo.l Gen. Genet. 228 : 258-264
Gallie, D.R., Walbot, V., 1992. Identification of the motifs within the tobacco mosaic virus 5'-leader responsible for enhancing translation. Nucleic Acids Res. 20 : 4631-4638
Gallie, D.R., Caldwell C, Pitto L, 1995. Heat shock disrupts cap and poly(A) tail function during translation and increases mRNA stability of introduced reporter mRNA. Plant Physiol. 108: 1703-1713
Gallie, D.R., Fortner, D., Peng, J., Puthoff, D., 2002. ATP-dependent hexameric assembly of the heat shock protein Hsp101 involves multiple interaction domains and a functional C-proximal nucleotide-binding domain. J. Biol. Chem. 277: 39617-39626
Gallie, D.R., 2002. The 5'-leader of tobacco mosaic virus promotes translation through enhanced recruitment of eIF4F. Nucleic Acids Res. 30: 3401-3411
Giddings, G., Allison, G., Brokks, D. and Carter, A., 2001. Transgenic plants as factories for biopharmaceuticals. Nat. Biotechnol. 18 : 1151-1155
Glaser, E., Sjoling, S., Tanudji, M. and Whelan, J., 1998. Mitochondrial protein import in plants. Signals, sorting, targeting, processing and regulation. Plant Mol Biol. 38 : 311-338
Goelet, P., Lomonossoff, G. P., Butler, P. J., Akam, M. E., Gait, M. J., Karn, J., 1982. Nucleotide sequence of tobacco mosaic virus RNA .Proc. Natl. Acad. Sci. USA 79 : 5818-5822
Gurley, W.B., 2000. HSP101: a key component for the acquisition of thermotolerance in plants. Plant Cell 12: 457-460
Haseloff, J., Siemering, K. R., Prasher, D. C., Hodge, S., 1997. Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc. Natl. Acad. Sci. USA 94 : 2122-2127
Holmberg, N., Farrés J., Bailey, J. E., Kallio P. T., 2001. Targeted expression of a synthetic codon optimized gene, encoding the spruce budworm antifreeze protein, leads to accumulation of antifreeze activity in the apoplasts of transgenic tobacco. Gene 275 : 115-124
Jagtap, V., Bhargava, S., Streb, P., Feierabend, J., 1998. Comparative effect of water, heat and light stresses on photosynthetic reactions in Sorghum bicolor (L.) Moench. J. Exp. Bot. 49: 1715-1721
Kamura, N., Sawasaki, T., Kasahara, Y., Takai, K., Endo, Y., 2005. Selection of 5’-untranslated sequences that enhance initiation of translation in a cell-free protein synthesis from wheat embryos. Bioorganic & Medicinal Chemistry Letters 15: 5402-5406
Lee, J.H., and Schoffl, F., 1996. An Hsp 70 antisence gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in transgenic Arabidopsis thaliana. Molecular and General Genetics 252 : 11-19
Ling, J., Wells, D.R., Tanguay, R.L., Dickey, L.F., Thompson, W.F., Gallie, D.R., 2000. Heat shock protein HSP101 Binds to the Fed-1 internal light regulatory element and mediates its high translational activity. The Plant Cells 12 : 1213-1227
Luehrsen, K. R., Walbot, V., 1993. Firefly luciferase as a reporter for plant gene expression studies. Promega Notes Magazine number 44, Nov. p.24
Lutz Nover K. B., Pascal D., Shravan K. M., Arnab G., and Klaus-Dieter S., 2001. Arabidopsis and the Hsf world: how many heat stress transcription factors do we need? Cell Stress Chaperones 6 : 177-189
Mason, H. S., Haq, T. A., Clements, J. D. and Arntzen, C. J., 1998. Edible vaccine protects mice against Escherichia coli heat-labile enterotoxin (LT) : potatoes expressing a synthetic LT-B gene. Vaccine 16 : 133-1343
Menassa, R., Jevnikar, A. and Brandle, J., 2001 .A contained system for the field production of plant recombinant proteins. In Molecular Farming. Eds. Toutant JP and Balazs E, INRA Editions, Versailles, France, 197-205
Morimoto, R.I., Tissieres, A., Georgopoulos, C., 1994. The Biology of Heat Shock Proteins and Molecular Chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
Napier, J.A., Richard, C., Shewry, P.R., 1998. Trafficking and stability of heterologous proteins in transgenic plants. Meth. Biotechnol. 3 : 189-202
Nieto-Sotelo, J., Martinez, L.M., Ponce, G., Cassab, G.I., Alagon, A., Meeley, R.B., Ribaut, J.M., Yang, R., 2002. Maize HSP101 plays important roles in both induced and basal thermotolerance and primary root growth. Plant Cell 14: 1621-1633
Osteryoung, K.W., Sundberg, H., Vierling, E., 1993. Poly(A) tail length of a heat shock protein RNA is increased by severe heat stress, but intron splicing is unaffected. Mol. Gen. Genet. 239 : 323-333
Sala, F., Rigano, M. M., Barbante A., Basso, B., Walmsley, A. M., Castiglione, S., 2003. Vaccine antigen production in transgenic plants: strateagies, gene constructs and perspectives. Vaccine 21 : 803-808
Satoh, J., Kato K.,Shinmyo A., 2004. The 5’-untranslated region of the tobacco alcohol dehydrogenase gene functions as an effective translational enhancer in plant. Journal of Bioscience and Bioengineering 98 : 1-8
Schirmer, E.C., Lindquist, S., Vierling, E., 1994. An Arabidopsis heat shock protein complements a thermotolerance defect in yeast. Plant Cell 6: 1899-1909
Schouten, A., Roosien J., van Engelen, F.A., de Jong, G.A., Borst-Vrenssen, A.W., Zilverentant, J.F., Bosch D., Stiekema, W.J., Gommers, F.J., Schots, A., Bakker, J., 1996. The C-terminal KDEL sequence increases the expression level of a single-chain antibody designed to be targeted to both the cytosol and the secretory pathway in transgenic tobacco. Plant Mol. Biol. 30 : 781-793
Sijmon, P.C., Dekker, B.M.M., Schrammeijer, B., Verwoerd, T.C., vanden Elzen, P.J.M., Hoekema, A., 1990. Production of correctly processed human serum albumin in transgenic plants. Biotechnology 8, 217-221
Stoger, E., Vaquero, C., Torres, E., Sack, M., Nicholsonm L., Drossard, J., 2000. Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Mol. Biol. 42 : 583-590
Tackaberry, E. S, Dudani, A. K, Prior, F, Tocchi, M, Sardana, R, Altosaar, I, Ganz, P. R, 1999. Development of biopharmaceuticals in plant expression systems: cloning, expression and immunological reactivity of human cytomegalovirus glycoprotein B (UL55) in seeds of transgenic tobacco. Vaccine 17 : 3020-3029
Tanguay, R. L., Gallie, D. R., 1996. Isolation and characterization of the 102-kilodalton RNA-binding protein that binds to the 5' and 3' translational enhancers of tobacco mosaic virus RNA. J. Biol. Chem. 271 : 14316-14322
Visioli G, Maestri E, Marmiroli N, 1997. Differential display-mediated isolation of a genomic sequence for a putative mitochondrial LMW HSP specifically expressed in condition of induced thermotolerance in Arabidopsis thaliana (L) Heynh. Plant Mol. Biol. 34 : 517-527
Wells, D.R., Tanguay, R.L., Le, H., Gallie, D.R., 1998. HSP101 functions as a specific translational regulatory protein whose activity is regulated by nutrient status. Genes Dev. 12 : 3236-3251
Whitham, S.A., Quan, S., Chang, H.S., Cooper, B., Estes, B., Zhu, T., Wang, X., Hou, Y.M., 2003. Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants. Plant J. 33 : 271-283
Xie, X.B., Cui, H.R., Shen, S.Q., Wu, D.X., Xia, Y.W., Shu, Q.Y., 2002. Studies on the distorted segregation of foreign genes in transgenic rice progenies. Yi Chuan Xue Bao 29(11): 1005-1011
Yang, D., Guo, F., Liu, B., Huang, N., Watkins, S.C., 2003. Expression and localization of human lysozyme in the endosperm of transgenic rice. Planta 216: 597–603
Zeyenko, V.V., Ryabova, L.A., Gallie, D.R., Spirin, A.S., 1994. Enhancing effect of the 3'-untranslated region of tobacco mosaic virus RNA on protein synthesis in vitro.
FEBS Lett. 354 : 271-273