| 研究生: |
林枝芳 Lin, Chih-Fang |
|---|---|
| 論文名稱: |
三維 Dirac-Klein-Gordon 方程式 On the Dirac-Klein-Gordon Equations in Three Space Dimensions |
| 指導教授: |
方永富
Fang, Yung-Fu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | Dirac-Klein-Gordon 方程式 、局部存在性 、norm form估計 |
| 外文關鍵詞: | Dirac-Klein-Gordon equations, null form estimate, local estimate |
| 相關次數: | 點閱:169 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文目的是要在三維的Dirac-Klein-Gordon方程式建立一個局部存在結果,主要使用固定點論據和null form估計。在第一和第二部分我們做了許多估計,我們希望證明各部份都是有界的。在第三個部分,我們準備針對DKG方程式,證明有局部存在性。我設法找到一個收縮映射T1。在第四個部分, 我們展示關鍵估計的證明。
The purpose of this paper is to establish a local existence result for Dirac-Klein-Gordon equations in the three dimensions, employing a fixed point argument and a null form estimate.
We have made many estimates in first and the second section. We wish each part is bounded.
In the third section, we are ready to prove the local existence for (DKG) equations. I try to find a contraction mapping T1. In the fourth section, we demonstrate the proof of the key estimate.
[Ba] A.Bachelot, Problem de Cauchy global pour syst´ems de Dirac-Klein-
Gordon, Ann. Inst. H. Poincar´e Phys. Th´eor. 48 (1988), 387-422.
[Ba] A.Bachelot, Global existence of large amplitude solutions for Dirac-
Klein-Gordon systems in Minkowski space, Lecture Notes in Math.
1402 (1989), 99-113(Springer Berlin).
[Bo] N. Bournaveas, Local existence of energy class solutions for the Dirac-
Klien-Gordon equations, Comm. PDE 24 (1999), 1167-1193.
[CB] Y. Choquet-Bruhat, Solutions globales des ´equations de Maxwell-
Dirac-Klien-Gordon (masses null), C. R. Acad. Sci. Paris S´er. I Math.
292 (1981), 153-158.
[CG] J.Chadam and R.Glassey, On Certain Global Solutions of the Cauchy
Problem for the (Classical) Coupled Klein-Gordon-Dirac equations in
one and three Space Dimensions, Arch. Rational Mech. Anal. 54
(1974), 223-237.
[EGS] M. Esteban and V. Georgiev and E. S´er´e, Stationary Solutions of
the Maxwell-Dirac and the Klien-Gordon-Dirac Equations, Calc. Var.
4 (1996), 265-281.
[F1] Yung-fu Fang, Local Existence for Semilinear Wave Equations and Applications
to Yang-Mills Equations, Ph.D dissertation (1996) (University
of Maryland).
[F2] Yung-fu Fang, Existence and Uniqueness for Dirac-Klein-Gordon
Equations in One Space Dimension (2002)(preprint)
[F3] Yung-fu Fang, A Direct Proof of Global Existence for the Dirac-Klein-
Gordon Equations in One Space Dimension (2004) Taiwanese Journal
of Math.
[FG] Yung-fu Fang and Manoussos Grillakis, Existence and Uniqueness for
Boussinesq type Equations on a Circle, Comm. PDE 21 (1996), 1253-
1277.
[FZ] W. Fushchich and R. Zhdanov, On the reduction and some new exact
solutions of the non-linear Dirac and Dirac and Dirac-Klien-Gordon
equations, J. Phys. A: Math. Gen. 21 (1988), L5-L9.
[G] V. Georgiev, Small amplitude solutions of the Maxwell-Dirac equations,
Indiana Univ. Math. J. 40 (1991), 845-883.
[GS] R.Glassey and W. Strauss, Conservation laws for the classical
Maxwell-Dirac and Klien-Gordon-Dirac equations, J. Math. Phys. 20
(1979),454-458.
[KM] S. Klainerman and M.Machedon, Space-time estimates for null forms
and the local existence theorem, Comm. Pure Appl. Math. XLVI
(1993), 1221-1268.
[MH] J.E.Marsden and M.J.Hoffman, Elementary Classical Analysis,
W.H.Freeman and Company New York.(1993).
[S] E.M. Stein, Singular Integrals and Differentiability Properties of Functions
(1970), Princeton University Press.
[S] E.M. Stein, Harmonic Analysis: Real-Variable Method, Orthogonality,
and Oscillatory Integrals (1993), Princeton University Press.
[SS] J. Shatah and M.Struwe, Geometric Wave Equations, Courant Lecture
Notes in Mathematics (1998).