| 研究生: |
劉金勳 Liu, Chin-Hsin |
|---|---|
| 論文名稱: |
接觸轉印與遮罩植入式微影技術製作超高頻表面聲波元件 Contact-Transfer and Mask Embedded Lithography for Fabrication of High Frequency Surface Acoustic Wave (SAW) Devices |
| 指導教授: |
李永春
Lee, Yung-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 壓電材料 、模態耦合理論 、表面聲波元件 、接觸轉印與遮罩植入式微影技術 |
| 外文關鍵詞: | Contact-Transfer and Mask-Embedded Lithography, surface acoustic wave, SAW devices, interdigital transducer |
| 相關次數: | 點閱:175 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
接觸轉印與遮罩植入式微影技術是一種新興的奈米轉印技術,與其他奈米轉印微影技術不同在於,此轉印技術不需經過曝光及加熱方式即可完成轉印,對於模仁及基板材質具有相當高的容忍度,塗佈於基板上之光阻亦不限制於必須是光敏性或熱塑性材料,更具有脫模簡單以及精確定義線寬等優點,是一項相當具有發展潛力的奈米轉印微影技術。
本文理論部份根據B.P. Abbott等人於1989年所發展出的模態耦合理論進行模擬分析,設計出週期2 μm、金屬線寬0.5 μm、且金屬比為0.5的交指叉電極與其構成的表面聲波濾波器,與週期3.2 μm、金屬線寬0.8 μm、且金屬比為0.5的交指叉電極與其構成的表面聲波共振器,之後在矽晶圓上製作表面聲波元件之凹模圖形結構當作轉印用模仁,並以接觸轉印與遮罩植入式微影技術,將矽模仁上的交指叉電極及焊點塊(Bonding Pad)同時且完全轉印至壓電材料128°Y-cut LiNbO3上,接著利用轉移材料層當做光阻蝕刻遮罩,以氧電漿對光阻進行去除,再配合其他微機電製程,成功的在128°Y-cut LiNbO3上製作出表面聲波元件,並經由電子顯微鏡(SEM)觀測其表面形貌及網路分析儀量測其電氣特性,證明此種奈米轉印微影技術能夠以更低廉的成本成功完成表面聲波元件。在比較模擬與實驗的結果後發現,表面聲波共振器所量測到的訊號與模擬結果較接近,而表面聲波濾波器所量測的訊號則誤差較大,且兩種元件量測到的中心頻率與模擬得到的中心頻率仍有一段差距。
A newly nanoimprint technique of Contact-Transfer and Mask Embedded Lithography (CMEL) is applied to fabricate the Surface Acoustic Wave (SAW) devices. The advantages of CMEL include: imprint without using energy to form the nanostructure; the life time of mold is more durable, flexibility in the combination of materials for mold and photoresist, and high resolution of imprint result.
The simulation is based on coupling-of-mode theory (COM theory) presented by B.P. Abbott in 1989. In the original of SAW filter design, it has interdigital transducer (IDT) structure with a period of 2 μm, metalization of 0.5. For the resonator, it has IDT structure with a period of 3.2 μm. In this experiment, the concave mold with the feature of SAW structure was transferred to 128° Y-cut LiNbO3 successfully by CMEL and MEMS fabrication. In the result, the frequency response of SAW devices were measured by microwave probe and network analyzer. Compare with the simulated and measurement results, it indicates that the SAW resonator has a better agreement than SAW filter.
[1] http://www.techreview.com/gen info/pr010803.asp
[2] 楊明三、林居南,電子與材料雜誌,第17期。
[3] L. Rayleigh, “On Waves Propagating along the Plane Surface of an Elastic Solid,” Pro. London Math. Soc., vol. 7, pp. 4-11, 1885.
[4] R.M. White and F.W. Voltmer, “Direct Piezoelectric Coupling to Surface Elastic Waves,” Appl. Phys. Lett., vol. 17, pp. 314-316, 1965.
[5] W.P. Mason, Electromechanical Transducers and Wave Filters, van Nostrand Company, 2nd Edition, 1948.
[6] W.P. Mason, Physical Acoustics, vol. 1A, Academic Press, 1964.
[7] W.R. Smith, H.M. Gerard, J.H. Collins, T.M. Reeder and H.J. Show, “Analysis of Interdigital Surface Wave Transducers by Use of an Equivalent Circuit Model,” IEEE Trans. on Microwave Theory and Techniques, vol. MTT-17, pp. 856-864, 1969.
[8] W.R. Smith, “Experimental Distinction Between Crossed-Field and In-Line Three-Port Circuit Models for Interdigital Transducers,” IEEE Trans. on Microwave Theory and Techniques, pp. 960-964, 1974.
[9] R.H. Tancrell and M.G. Holland, “Acoustic Surface Wave Filters,” Proc. IEEE, vol. 59, pp. 393-409, 1971.
[10] C.S. Hartmann, D.T. Bell, Jr. and R.C. Rosenfeld, “Impulse response model design of acoustic surface-wave filters,” IEEE Trans. on Microwave Theory and Techniques, vol. MTT-21, pp. 162-175, 1973.
[11] J.R. Pierce, “Coupling-of-modes of propagation, ” J. Appl. Phys., vol. 25, pp. 179-183, 1954.
[12] P.S. Cross and R.V. Schmidt, “Coupled Surface-Acoustic-Wave Resonators,” Bell System Tech. Journal, vol. 56, pp. 1447-1482, 1977.
[13] H.A. Haus, “Modes in SAW grating resonators,” J. Appl. Phys., vol. 48, pp. 4955-4961, 1977.
[14] C.S. Hartmann, P.V. Wright, R.J. Kansy and E.M. Garber, “An analysis of SAW interdigital transducers with internal reflections and the application to the design of single-phase unidirectional transducers,” Proc. IEEE Ultrasonics Symp., pp. 29-34, 1982.
[15] D.P. Chen and H.A. Haus, “Analysis of Metal-Strip SAW Gratings and Transducers,” IEEE Trans. on Sonics and Ultrason., vol. SU-26, pp. 395-408, 1985.
[16] P.V. Wright, “A new generalized modeling of SAW transducers and gratings,” Pro. 43th Frequency Control Symp., pp. 596-605, 1989.
[17] B.P. Abbott, C.S. Hartmann and D.C. Malocha, “A Coupling-of-Modes Analysis of Chirped Transducers Containing Reflective Electrode Geometries,” IEEE Ultrason. Symp., pp. 129-134, 1989.
[18] B.P. Abbott, A Coupling-of-Modes Model for SAW Transducers with Arbitrary Reflectivity Weighting, the Department of Electrical Engineering at the University of Central Florida Orlando, Florida, 1989.
[19] Stephen Y. Chou, Peter R.Krauss, Preston J. Rmstrom, Appl. Phys. Lett., Vol. 67(21), pp. 3114-3116, 1995.
[20] Stephen Y. Chou, Peter R.Krauss, Wei Zhang, Lingjie Guo, and Lei Zhuang J. Vac. Sci. Technol. B, Vol. 15(6), pp. 2897-3001, 1997.
[21] M. Otto, M. Bender, B. Hadam, B. Spangenberg, and H. Kurz, Microelectronic Engineering, Vol. 57-58, pp. 361-366, 2001.
[22] S. Scheerlinck, D.Van Thourhout and R.Baets ,”Nano Imprint Lithography for Photonic Structure Patterning,”IEEE/LEOS Benelux, Chapter, 2005, Mons.
[23] Y. Xia, G. M. Whitesides, Angew. Chem. Int., Vol. 37, pp. 550-575, 1998.
[24] X. M. Zhao, Y. Xia and G. M. Whitesides, “Soft lithographic methods for nano-fabrication”, Journal of Materials Chemistry, vol. 7(7), pp. 1069-1074, 1997.
[25] Stephen Y. Chou, Chris Keimel & Jian Gu, Nature, Vol. 417(20), pp. 835-837, 2002.
[26] C.H. Chen, C.P. Liu, Y.C. Lee, F.B. Hsiao, C.Y. Chiu, M.H. Chung and M.H. Chiang, ”IR Laser-Assisted Micro/Nano Imprinting” Journal of Micromechanics and Microengineering, Vol. 16, pp. 1463-1467, 2006.
[27] Y.C. Lee and C.Y. Chiu, “A New Micro/Nano-Lithography Based on Contact Transfer of Thin Film and Mask Embedded Etching” Jornal of Advanced materials, Submitted date: July 11th, 2007.
[28] C.K. Campell, Surface Acoustic Wave Devices for Mobile and Wireless Communications, New York : Academic Press, 1998.
[29] D.P. Morgan, Surface-wave devices for signal processing, Elsevier, 1985.
[30] T. Thorvaldsson, “Analysis of The Natural Single Phase Unidirectional SAW Transducer,” IEEE Ultrason. Symp., pp. 91-96, 1989.
[31] T. Thorvaldsson and B.P. Abbott, “Low Loss SAW Filters Utilizing the Natural Single Phase Unidirectional Transducer (NSPUDT),” IEEE Ultrason. Symp., pp. 43-48, 1990.
[32] B.P. Abbott and D.C. Malocha, “Closed Form Solutions for Multistrip Coupler Operation Including the Effects of Electrode Resistivity,” IEEE Ultrason. Symp., pp. 25-30, 1990.
[33] B.P. Abbott, “A Derivation of The Coupling-of-Modes Parameters Based on The Scattering Analysis of SAW Transducers and Gratings,” IEEE Ultrason. Symp., pp. 5-10, 1991.
[34] Ken-ya Hashimoto, Surface Acoustic Wave Devices in Telecommunications: modeling and simulation, Springer, 2000.
[35] B.P. Abbott, C.S. Hartmann and D.C. Malocha, “Transduction Magnitude and Phase for COM Modeling of SAW Devices,” IEEE Trans. Ultrason., Ferroelec., Freq. Contr., vol. 39, pp. 54-60, 1992.
[36] 林俊甫, 雙埠表面聲波濾波器的模擬與量測, 國立成功大學機械工程研究所碩士論文, 民國92年。
[37] M. Beck, M. Craczyk, I. Maximov, E.L. Sarwea, T.G.I. Linga, M. Keilb, and L. Montelius, Microelectronic Engineering, vol. 61-62, pp. 441-448, 2002.