| 研究生: |
李維韜 Li, Wei-Tao |
|---|---|
| 論文名稱: |
基於覆蓋控制之雙向人機遠端遙控系統 Bilateral Teleoperation Systems in Human-Swarm Interaction with Coverage Control |
| 指導教授: |
劉彥辰
Liu, Yen-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 176 |
| 中文關鍵詞: | 人機操控系統 、覆蓋控制 、固定時間延遲 、人機操控系統實驗平台 |
| 外文關鍵詞: | Human-swarm system, coverage control, communicatinal delay, human-swarm experiment |
| 相關次數: | 點閱:70 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出使用單一操作人員同時與群組機器人進行遠端操控,並根據環
境資訊進行覆蓋控制之控制系統架構。藉由本論文提出的方法讓操作人員在近端操控一隻主機器人並經由任務空間函數來傳送操作指令,在通訊端具有固定時間延遲下,此操作指令能用來控制遠端群組機器人系統的位置及分散程度等。群組機器人控制系統部分,主要將操作人員的指令與環境的資訊轉換為覆蓋的重要性分布,再藉由覆蓋控制的方法來求出各機器人所需追循的分區質心位置,藉此群組機器人除了會覆蓋到操作人員給定的目標狀態外也能覆蓋在環境本身重要性較高的區域。再者,機器人的分布狀態能回授至主機器人端並讓操作人員在操控時能感受到力回饋,則操作人員能依據此力回饋的方向與大小來進一步監控或調整遠端機器人的狀態。
為了讓機器人能有效地根據環境的資訊來進行分布,本論文所使用的覆蓋
控制方法將整個環境依據機器人的數量與距離來進行Voronoi分區,藉由累積分區中所有點的密度函數值來計算出分區質心位置,若機器人位置移動至該質心位置,則稱為最佳覆蓋狀態或Voronoi質心佈置(Centroidal Voronoi Tessellation,CVT)。考慮了密度函數是否為時變,覆蓋控制器可分為靜態Lloyd控制器及時變TVD-D1控制器來達成質心位置的追蹤。然而,在真實情況下,要收集整個環境的點資訊,其感測成本及計算量較大。因此,本研究也考慮了群組機器人具有相異且有限的感測範圍來計算各分區範圍內的點資訊。其中在相異感測半徑的條件下,本論文修正了r-有限Voronoi分區方法並提出此分區下時變的覆蓋控制器來達成有限區域之覆蓋任務。
本論文提出的人機遙控系統之全區域覆蓋控制與有限區域覆蓋控制,除了
用理論分析及數值模擬來驗證此控制架構的穩定性及性能等,亦透過架設實驗平台來進行人機遠端操控系統之實驗,此實驗用來驗證群組機器人分別會受操作人員與環境的影響,綜合其影響後也可從力回饋的資訊來驗證覆蓋的性能。
Multi-robots system has been developed in recent years to accomplish more complicated tasks. Furthermore, adding a human operation can improve exibility and maneuverability for the control system, which is called the human-swarm
system. In this thesis, the environmental information is also added to control framework so that the swarm robot can execute further applications such as exploration or mapping. For the swarm robot system, the eff ects due to human operator and environment are simultaneously combined to the density function. Implementing the coverage control, each robot gather the density function belonging to separate Voronoi partition. Then using the Lloyd controller or TVD-D1 controller to make robots converge to their Voronoi centroids. However, the above
approaches need to detect the full range of environment. That is difficult to achieve in real and need great cost or computation. Hence, considering that robots have di fferent sensing ranges, this thesis proposes the novel approach to modify the robot partition so that the robots can move to the modifi ed centroids using proposed controller with the time-varying density function. For the communication between master and swarm robots, considering the situation that the constant time delays exist, the thesis take the states of end-eff ector as the master task space, and the states of robot distribution as the swarm task space. In this framework, the proposed controllers can guarantee the convergence with constant time delays.
Besides the mathematical analysis, the full and limited range for coverage control applied to the human-swarm system are validated via numerical simulations and experiments in this thesis.
[1] Yen-Chen Liu. Task-space coordination control of bilateral human-swarm systems. Journal of the Franklin Institute, 352(1):311-331, 2015.
[2] Erick J. Rodriguez-Seda, James J. Troy, Charles A. Erignac, Paul Murray,Dusan M. Stipanovic, and Mark W. Spong. Bilateral teleoperation of multiple mobile agents: Coordinated motion and collision avoidance. Control Systems Technology, IEEE Transactions on, 18(4):984-992, 2010.
[3] Dusan M. Stipanovic, Peter F. Hokayem, Mark W. Spong, and Dragoslav D. Siljak. Cooperative avoidance control for multiagent systems. Journal of Dynamic Systems, Measurement, and Control, 129(5):699-707, 2007.
[4] Tucker Balch and Ronald C. Arkin. Behavior-based formation control for multirobot teams. Robotics and Automation, IEEE Transactions on, 14(6):926-939, 1998.
[5] Jorge Cortes, Sonia Martinez, Timur Karatas, and Francesco Bullo. Coverage control for mobile sensing networks. IEEE Transactions on Robotics and Automation, 20(2):243-255, April 2004.
[6] Jorge Cortes, Sonia Martinez, Timur Karatas, and Francesco Bullo. Coverage control for mobile sensing networks. In Robotics and Automation, 2002. Proceedings. ICRA'02. IEEE International Conference on, volume 2, pages 1327-1332. IEEE, 2002.
[7] Sung G. Lee, Yancy Diaz-Mercado, and Magnus Egerstedt. Multirobot control using time-varying density functions. IEEE Transactions on Robotics,31(2):489-493, April 2015.
[8] Jorge Cortes, Sonia Martinez, and Francesco Bullo. Spatially-distributed coverage optimization and control with limited-range interactions. ESAIM: Control, Optimisation and Calculus of Variations, 11(04):691-719, 2005.
[9] Yiannis Stergiopoulos and Anthony Tzes. Coverage-oriented coordination of mobile heterogeneous networks. In Control & Automation (MED), 2011 19th Mediterranean Conference on, pages 175-180. IEEE, 2011.
[10] Yiannis Stergiopoulos, Michalis Thanou, and Anthony Tzes. Distributed collaborative coverage-control schemes for non-convex domains. Automatic Control, IEEE Transactions on, 60(9):2422-2427, 2015.
[11] Mark W. Spong, Seth Hutchinson, and M. Vidyasagar. Robot modeling and control. John Wiley & Sons, 2006.
[12] Koji Kato, Horoshi Ishiguro, and Matter Barth. Identifying and localizing robots in a multi-robot system environment. In Intelligent Robots and Systems, 1999. IROS '99. Proceedings. 1999 IEEE/RSJ International Conference on, volume 2, pages 966-971, 1999.
[13] Richard M.Murray. Recent research in cooperative control of multivehicle systems. Journal of Dynamic Systems, Measurement, and Control, 129(5):571-583, 2007.
[14] Iris F.A. Vis. Survey of research in the design and control of automated guided vehicle systems. European Journal of Operational Research, 170(3):677-709, 2006.
[15] Han-Lim Choi, Luc Brunet, and Jonathan P. How. Consensus-based decentralized auctions for robust task allocation. Robotics, IEEE Transactions on, 25(4):912-926, 2009.
[16] Hugh Durrant-Whyte and Tim Bailey. Simultaneous localisation and mapping(slam): Part i the essential algorithms. 2006.
[17] Jorge Torres-Solis, Tiago H. Falk, and Tom Chau. A review of indoor localization technologies: towards navigational assistance for topographical disorientation. INTECH Open Access Publisher, 2010.
[18] Tareq Alhmiedat, Ghassan Samara, and Amer O. Abu Salem. An indoor fingerprinting localization approach for zigbee wireless sensor networks. CoRR, abs/1308.1809, 2013.
[19] Mussa Bshara, Umut Orguner, Fredrik Gustafsson, and Leo Van Biesen. Fingerprinting localization in wireless networks based on received-signal-strength measurements: A case study on wimax networks. Vehicular Technology, IEEE Transactions on, 59(1):283-294, 2010.
[20] Dong Sun, Can Wang, Wen Shang, and Gang Feng. A synchronization approach to trajectory tracking of multiple mobile robots while maintaining time-varying formations. Robotics, IEEE Transactions on, 25(5):1074-1086,2009.
[21] Xiaohai Li and Jizhong Xiao. Robot formation control in leader-follower motion using direct lyapunov method. International Journal of Intelligent Control and Systems, 10(3):244-250, 2005.
[22] Nikhil Chopra, Dusan M. Stipanovic, and Mark W. Spong. On synchronization and collision avoidance for mechanical systems. In 2008 American Control Conference, pages 3713-3718, June 2008.
[23] Chao-Wei Lin, Mun-Hooi Khong, and Yen-Chen Liu. Experiments on human-in-the-loop coordination for multirobot system with task abstraction. Automation Science and Engineering, IEEE Transactions on, 12(3):981-989,
2015.
[24] Emmanuel Nuno, Luis Basanez, and Romeo Ortega. Passivity-based control for bilateral teleoperation: A tutorial. Automatica, 47(3):485-495, 2011.
[25] Kenji Kaneko, Hiroki Tokashiki, Kazuo Tanie, and Kiyoshi Komoriya. Impedance shaping based on force feedback bilateral control in macro-micro teleoperation system. In Robotics and Automation, 1997. Proceedings., 1997 IEEE International Conference on, volume 1, pages 710-717. IEEE, 1997.
[26] Nico Hubel, Sandra Hirche, Azwirman Gusrialdi, Takeshi Hatanaka, Masayuki Fujita, and Oliver Sawodny. Coverage control with information decay in dynamic environments. In 17th IFAC world congress, pages 4180-4185, 2008.
[27] Gokhan M. Atinc, Dusan M. Stipanovic, and Petros G. Voulgaris. Supervised coverage control of multi-agent systems. Automatica, 50(11):2936-2942, 2014.
[28] Dimitra Panagou, Dusan M. Stipanovic, and Petros G. Voulgaris. Dynamic coverage control in unicycle multi-robot networks under anisotropic sensing.Frontiers in Robotics and AI, 2:3, 2015.
[29] Islam I. Hussein and Dusan M. Stipanovic. Effective coverage control for mobile sensor networks with guaranteed collision avoidance. Control Systems Technology, IEEE Transactions on, 15(4):642-657, 2007.
[30] Rushabh Patel, Paolo Frasca, and Francesco Bullo. Centroidal areaconstrained partitioning for robotic networks. Journal of Dynamic Systems, Measurement, and Control, 136(3):031024, 2014.
[31] Jorge Cortes. Coverage optimization and spatial load balancing by robotic sensor networks. Automatic Control, IEEE Transactions on, 55(3):749-754, 2010.
[32] Marzieh Kooshkbaghi and Farnaz Abdollahi. Coverage control considering unknown moving obstacles avoidance. In Robotics and Mechatronics(ICRoM), 2014 Second RSI/ISM International Conference on, pages 089-094. IEEE, 2014.
[33] Yancy Diaz-Mercado, Sung G. Lee, and Magnus Egerstedt. Distributed dynamic density coverage for human-swarm interactions. In 2015 American Control Conference (ACC), pages 353-358, July 2015.
[34] Chi-Tsong Chen. Linear system theory and design. Oxford University Press, Inc., 1995.
[35] Hassan K. Khalil and Jessy W. Grizzle. Nonlinear systems, volume 3. Prentice hall New Jersey, 1996.
[36] Harley Flanders. Differentiation under the integral sign. The American Mathematical Monthly, 80(6):615{627, 1973.
[37] Bruce R. Munson, Donald F. Young, and Theodore H. Okiishi. Fundamentals of fluid mechanics. New York, 3:4, 1990.
[38] Mac Schwager, Daniela Rus, and Jean-Jacques Slotine. Decentralized, adaptive coverage control for networked robots. The International Journal of Robotics Research, 28(3):357-375, 2009.
[39] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. MIT press, 2005.
[40] Katie Laventall and Jorge Cort es. Coverage control by multi-robot networks with limited-range anisotropic sensory. International Journal of Control, 82(6):1113-1121, 2009.