簡易檢索 / 詳目顯示

研究生: 高文彥
Kao, Wen-Yan
論文名稱: 應用k-NN分類法及基因演算法於數位學習中學習類型分類與學習行為特徵篩選
Using K-NN Classification and Genetic Algorithms to Classify Learning Styles and Screen Learning Behavior Features
指導教授: 朱治平
Chu, Chih-Ping
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 67
中文關鍵詞: 基因演算法學習管理系統學習行為特徵k個最鄰近點分類法
外文關鍵詞: learning behavior feature, genetic algorithms, k-nearest neighbor algorithm, learning management system
相關次數: 點閱:96下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般數位學習系統中,均缺乏迅速有效學習類型分類機制,在此種環境下,若欲考量不同學習類型以提供學習者適性化教材,首先須大量地蒐集學習者的學習特徵資料,再加以分析分類,此一過程往往需耗費許多時間。本研究將資料探勘技術中的k個最鄰近點(k - nearest neighbor)分類法、配合基因演算法應用於學習者管理平台上,將不同學習類型分類,並篩選出可快速辨識學習類型的學習者行為特徵,本研究之目的在於建立可自我調適(self-adjustment)、快速有效學習類型分類機制,可做為學習管理平台提供不同類型學習者適性化教材之依據。

    The existing learning management systems (LMS) are in general not equipped with learning style classification facility. In such a situation, if a system intends to provide with learner-adaptive learning contents, it must collects enormous learning behavior data of learners and then process them with complicated computing. This task is usually time-consuming and needs lots of computing resources. In this paper we describe a fast, efficient and adaptive learning-style classification mechanism that is based on k - nearest neighbor classification (K-NN) approach and genetic algorithms. The contents presented in this paper can be used for reference for constructing LMS with adaptive learning contents providing.

    第一章 序論 1.1 簡介 1 1.2 研究動機與目的 1 1.3 章節提要 2 第二章 背景知識 2.1 SCORM 3 2.1.1執行環境(Run-Time Environment, RTE) 4 2.1.2活動樹(Activity Tree) 6 2.2 學習類型與學習行為特徵 9 2.2.1 學習類型 9 2.2.2 學習行為特徵 9 2.3 k-NN分類法 11 2.4 基因演算法 14 2.4.1 基因演算法之流程 14 2.4.2 基因演算法之應用 19 第三章 系統設計 3.1 k-NN分類法之改善 22 3.2 學習類型分類與學習行為特徵篩選 24 3.2.1基於k-NN分類法及基因演算法之學習模型 24 3.2.2以基因演算法進行學習行為特徵篩選 31 3.3 合併基因演算法與k-NN分類法之自我調適機制 37 3.4 系統架構 39 3.5 與其他適性化教學之比較 48 第四章 系統功能展示 4.1系統使用介面 50 第五章 結論與未來工作 5.1 結論 63 5.2 未來工作 64 參考文獻 65

    參考文獻
    [1] 丁一賢,陳牧言, “資料探勘,” 滄海書局.
    [2] 林奇賢,“網路學習環境的設計與應用,”資訊與教育, 第67期, 1998.
    [3] 林清賀,“網路學習系統上之學習歷程評量,” 國立中央大學資訊工程研究所碩士論文, 1998.
    [4] 吳弘凱,“國小學童數位學習擷取課程行為樣式分析,” 國立台南大學資訊教育研究所碩士論文, 2004.
    [5] 邱瓊慧,朱治平,“學習者學習行為分析研究,” 資訊工業策進會分包學術機構研究計畫期末報告, 2003.
    [6] 陳奕錡,“符合SCORM規格具有策略推薦之策略編輯工具設計與實作,” 國立成功大學資訊工程研究所碩士論文, 2005.
    [7] 張瑞程,“支援學習策略選取之智慧型規則管理機制之研究,” 國立成功大學資訊工程研究所碩士論文, 2005.
    [8] 黃履峰,邱貴發,“學習歷程檢視器:Web學習環境中的學習管理工具,” 第八屆電腦輔助教學國際研討會大會論文, 台中市, 逢甲大學, 1999.
    [9] 鄭安授,“電子報使用者遊歷行為之描繪-以交大學生為例,” 國立交通大學傳播所碩士論文, 2001.
    [10] 蔡旻芳,“網路學習之學習歷程分析系統,” 國立中山大學資訊管理研究所碩士論文, 2000.
    [11] 劉鼎康,“應用類神經網路進行垃圾郵件過濾之研究,” 中原大學資訊管理系碩士論文,2005.
    [12] Advanced Distributed Learning, SCORM Overview, 2004.
    [13] Advanced Distributed Learning, SCORM Content Aggregation Model, 2004.
    [14] Advanced Distributed Learning, SCORM Run-Time Environment, 2004.
    [15] Advanced Distributed Learning, SCORM Sequencing and Navigation, 2004.
    [16] A.Whitney, “A direct method of nonparametric measurement selection,” IEEE Trans. Computer., vol.20, pp.1100-1103, 1971.
    [17] D.L. Wilson, “Asymptotic properties of nearest neighbor rules using edited data,”IEEE Transactions on Systems, Man, and Cybernetics, pp. 408-421, 1972.
    [18] Jian-Hung Che、Zhao-Hong Yen、Shinn-Ying Ho, “Design of Optimal Nearest Neighbor Classifier Using an Intelligent Multi- Objective Evolutionary Algorithm,” Lecture Notes in Computer Science (LNCS), vol.3157, pp.262-271, Springer, 2004.
    [19] Kuncheva, L. I. and Jain, L. C., “Nearest neighbor classifier: Simultaneous editing and feature selection,” Pattern Recognition Letters, vol.20, pp.1149-1156, 1999.
    [20] L. I. Kuncheva, “Editing for the k-nearest neighbors rule by a genetic algorithm,” Pattern Recognition Letter, Vol.16, pp. 809-814, 1995.
    [21] L. I. Kuncheva, “Fitness functions in editing k-NN reference set by genetic algorithms,” Pattern Recognition, Vol.30, No.6, pp. 1041-1049, 1997.
    [22] P.E Hart, “The condensed nearest neighbor rule,” IEEE Transactions on Information Theory, Vo1.16, pp.515-516, 1968.
    [23] S. Stearns, “On selecting features for pattern classifiers,” In 3rd International Conference on Pattern Recognition, Coronado, CA, pp. 71-75, 1976.
    [24] S.-Y. Ho, L.-S. Shu and H.-M. Chen, Intelligent genetic algorithm with a new intelligent crossover using orthogonal arrays,” Proc. of the Genetic and Evolutionary Computation Conference, pp.289-296, 1999.
    [25] Tom M. Mitchell, “Machine Learning,” McGRAW-Hill International Editions.
    [26] Yu,P.T.,Own,C.M.&Lin,L.W., “On the learning behavior analysis of web based interactive environment,” International Conference on Computer in Education(ICCE2002), USA, 2002, January.

    下載圖示 校內:2007-08-11公開
    校外:2007-08-11公開
    QR CODE