簡易檢索 / 詳目顯示

研究生: 朱啟維
Chu, Chi-Wei
論文名稱: 錳離子添加對Ba1.002(Ti0.82Zr0.18)O3+δ 絕緣電阻及介電性質之影響
Effects of Manganese Doped Ba1.002(Ti0.82Zr0.18)O3+δ on Insulation Resistance and dielectric Properties
指導教授: 方冠榮
Fung, Kuan-zong
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 92
中文關鍵詞: 積層陶瓷電容鈦酸鋇介電常數絕緣電阻
外文關鍵詞: Y5V, Dielectric constant, Insulation resistance, Barium Titanate oxide, MLCC
相關次數: 點閱:63下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   Ba1.002(Ti0.82Zr0.18)O3+δ為陶瓷結構中之鈣鈦礦結構(ABO3),離子半徑之較小錳離子添加後將取代鈦離子佔據鈣鈦礦結構中B-site之體心位置,鋇離子則因具有較大之離子半徑,添加入Ba1.002(Ti0.82Zr0.18)O3+δ則將佔據其鈣鈦礦結構八個角隅之A-site陽離子位置;因此本實驗利用單獨添加錳離子於B-site之陽離子位置以增加B-site之離子濃度,造成A-site離子濃度相對下降及添加相同濃度的錳離子及鋇離子,使得A-site之陽離子濃度與B-site之陰離子濃度固定,以探討不同還原性氣氛下錳離子對Ba1.002(Ti0.82Zr0.18)O3+δ結構穩定性之影響以及顯微結構之變化。並藉由不同錳離子添加造成之結構上之缺陷,利用缺陷所帶正負電荷之差異,使Ba1.002(Ti0.82Zr0.18)O3+δ陶瓷晶體在還原性氣氛下,絕緣電阻因錳離子之添加而有所提升。

    本實驗分成以下兩個部份來討論:
    (1) :化學式表示,當添加不同濃度之錳離子,亦同時添加與錳離子相同濃度之鋇離子(本實驗添加範圍為0mol%、0.5mol%、1mol%、1.5mol%、2mol%、3mol%、4mol%、5mol%),使得 中A-site之鋇離子濃度保持多於B-site之離子濃度0.002 mol;通入兩種之還原性氣氛,其分別為乾式還原性氣氛(dry 97%N2-3%H2) 及濕式還原性氣氛(moist 97%N2-3%H2),燒結溫度為1300℃,探討錳離子取代B位置之離子對性質上之影響。經由XRD分析可得知,不同濃度之添加,此一A-site離子濃度較多之富鋇組成,於乾式還原性氣氛下燒結有第二相 的生成;在濕式還原性氣氛則形成單相固溶體,而為正方晶結構。經由SEM之觀察得知,富鋇組成之 於不同氧分壓之還原性氣氛燒結所得到之顯微結構具有較多之孔隙,且僅有之75%~80%相對密度值。而絕緣電阻量測可得知,在乾式還原氣氛燒結,在濃度為0.02 mol時,絕緣電阻可由107Ω-cm提升至109Ω-cm;而在濕式還原氣氛下則絕緣電阻率可提昇至較高之1010Ω-cm。

    (2) :表示不同濃度錳離子添加於鈣鈦礦結構B-site之陽離子位置,使鈣鈦礦結構A-site與B-site之陽離子比例,隨著添加陽離子錳濃度之增加而改變;添加之濃度如同(1)方法之濃度;因無鋇離子添加時,鈣鈦礦結構中之A-site與Bsite陽離子比例將隨佔據B-site之錳離子濃度增加而下降。經此一步驟與如同方法(1)之燒結溫度與氣氛,利用XRD可得此一組成無第二相析出;並且錳添加進入B-site形成之A-site鋇離子空缺及氧空缺,將有利於較大離子半徑之鋇離子及氧離子之擴散,有助於較緻密微結構之獲得。錳離子對絕緣電阻率提昇方面,乾式還原氣氛電阻率可由107Ω-cm提升至1011Ω-cm,濕式還原氣氛則可提升至1012Ω-cm。

      本實驗進一步利用添加0.3wt%之BaO-SiO2於上述兩種組成,作為助燒結劑,可發現助燒結劑有效的促進燒結,增加結構的緻密,使燒結密度達95%以上之相對密度。當改善結構的緻密性,介電常數及絕緣電阻率均有顯著提升,介電常數最高可達10000左右,而絕緣電阻率在緻密性改善,更可隨著錳離子之作用而達到1013Ω-cm,因此改善燒結緻密性後更有助於Ba1.002(Ti0.82Zr0.18)O3+δ絕緣電阻及介電性質的提昇。

      In this study, we modified A-site and B-site cation ratio in perovskite(ABO3) structure by adding different amounts of manganese. To investigate manganese adding could accompany the effects on structure stability and microstructure changes in commercial Ba1.002(Ti0.82Zr0.18)O3+δ(BTZ) in reducing sintering condition. Furthermore, adjusted it’s A/B cation ratio can cause various defects in structure. We induced the defect charge carriers by manganese inhibiting Ba1.002(Ti0.82Zr0.18)O3+δ insulation resistance properties degradation according to defects chemical equation .

    This study divided in two parts:
    (1) :It means as doped manganese as well as equal concentration barium into BTZ structure. It can help us to modify A-site cation always excess 0.002 mole than B-site cation. We doped y from 0.005 to 0.05 mole. Then we chose two reducing atmospheres “dry and moist” 97%N2-3%H2 mixed gaseous and sintered at 1300℃ for 4hr. In this study, XRD diffraction pattern could help us to know barium rich composition sintered at dry reducing condition would segregated barium rich second phase “Ba2TiO4”. The barium rich composition (A-site excess 0.002) after sintering is obtained porous structure in both reducing conditions. IR (insulation resistance) measurement after sintering in dry condition obtained from 107Ω-cm (un-doped BTZ) to 109Ω-cm(2mol%Mn).And raise to 1010Ω-cm after sintered in moist condition.
    (2) :It represents x mole manganese doped into BTZ perovskite structure B-site lattice point that can decrease A/B cation ratio. From SEM observation, it indicates that adjustment of A/B cation ratio would change microstructure. A/B cation ratio under 1 could results densification as sintered in both reducing conditions. IR increase obviously from 107Ω-cm to 1011Ω-cm in dry condition and further is raised to 1012Ω-cm in moist condition as 3 mol% Mn doped.

    總目錄 中文摘要……………………………………………………………………..…I 英文摘要……………………………………………………………III 總目錄………………………………………………………………..v 圖目錄…………………………………………………………….....ix 表目錄…………………………………..………………………….xiv 第一章、緒 論 1 1-1 前言 1 1-2 研究目的 2 第二章、理論基礎與文獻回顧 3 2-1 鈦酸鋇微結構與電性特性 3 2-1-1介電性質 3 2-1-2 鈦酸鋇單晶的晶體結構及介電性質 4 2-1-3 鈦酸鋇多晶陶瓷的介電性質 8 2-2 鈦酸鋇半導化現象及其半導化機構 10 2-3 A/B ratio對鈦酸鋇之影響 11 2-4 孔隙與晶粒大小對介電性質的影響 13 2-5 添加物對鈦酸鋇陶瓷介電性質的影響 19 2-6 正溫度係數特性 22 第三章、實驗方法及步驟 25 3-1試片製備 26 3-1-1 實驗材料 26 3-1-2 Ba1.002+y(Ti0.82Zr0.18Mny)O3+δ及Ba1.002 (Ti0.82Zr0.18Mnx)O3+δ 26 3-2 性質測試 29 3-2-1晶體結構分析 29 3-2-2 SEM表面型態觀察 29 3-2-3 密度量測 29 3-2-4 電子微探分析儀分析 30 3-2-5 絕緣電阻(Insulation Resistance)測試 30 3-2-6 介電常數(Dielectric constant)量測 30 3-2-7 燒結條件 31 第四章、結果與討論 33 4-1 錳離子對Ba1.002+y(Ti0.82Zr0.18Mny)O3+δ結構穩定性及顯微結構的影響 33 4-1-1 Ba1.002+y(Ti0.82Zr0.18Mny)O3+δ於還原性氣氛下之XRD繞射分析 33 4-1-2 Ba1.002(Ti0.82Zr0.18)O3+δ顯微結構觀察 37 4-2 錳離子添加改變Ba1.002(Ti0.82Zr0.18Mnx)O3+δ A/B ratio對結構穩定性及顯微結構的影響 43 4-2-1 Ba1.002(Ti0.82Zr0.18Mnx)O3+δ之XRD繞射分析 43 4-2-2 錳離子添加改變Ba1.002(Ti0.82Zr0.18Mnx)O3+δ A/B ratio 對顯微結構之影響 45 4-3 錳離子對Ba1.002+y(Ti0.82Zr0.18Mny)O3+δ 絕緣電阻之影響 53 4-4 錳離子添加改變Ba1.002(Ti0.82Zr0.18Mnx)O3+δ A/B ratio對絕緣電阻之影響 59 4-5 錳離子對Ba1.002+y(Ti0.82Zr0.18Mny)O3+δ介電性質的影響 63 4-5-1錳離子對Ba1.002+y(Ti0.82Zr0.18Mny)O3+δ介電常數的影響 63 4-5-2錳離子對Ba1.002+y(Ti0.82Zr0.18Mny)O3+δ介電損失因子的影響 65 4-5-3錳離子對Ba1.002+y(Ti0.82Zr0.18Mny)O3+δ Tc點的影響 65 4-6 錳離子添加改變Ba1.002(Ti0.82Zr0.18Mnx)O3+δ A/B ratio對介電性質之影響 68 4-6-1 錳離子添加改變Ba1.002(Ti0.82Zr0.18Mnx)O3+δ A/B ratio之介電常數變化 68 4-6-2錳離子添加改變Ba1.002(Ti0.82Zr0.18Mnx)O3+δ A/B ratio對介電損失因子的影響 71 4-6-3 錳離子添加改變Ba1.002(Ti0.82Zr0.18Mnx)O3+δ A/B ratio對Tc點的影響 71 4-7助燒結劑添加對Ba1.002(Ti0.82Zr0.18)O3+δ性質之影響 75 4-7-1 助燒結劑添加對Ba1.002(Ti0.82Zr0.18)O3+δ 顯微結構之變化 75 4-7-2助燒結劑添加對Ba1.002(Ti0.82Zr0.18)O3+δ絕緣電阻之影響 80 4-7-3助燒結劑添加對Ba1.002(Ti0.82Zr0.18)O3+δ介電性質之影響 80 第五章、結 論 87 參考文獻 88

    [1] A. J. Moulson and J.M Herbert ,”Electroceramics”, Chapman and Hall,(1990)

    [2] V. Krasevec,M.Drofenik and D. kolar “Toptaxy between BaTiO3 and Ba6Ti17O40” J. Am. Ceram. Soc. (8) pp193-195 ,(1987)

    [3] M. Tanaka “Electron optical studies of barium titanate single crystal films” J. Phys. Soc. Jap (19) pp954-970,(1964)

    [4] G. Arlt “Domain configuration and equilibrium size of domains in BaTiO3 ceramics.,J.Appl.Phys.51(9)pp4956-4960(1980)

    [5] T. Mitsui ”Introduction to Physics of Ferroelectrics”, Gordon and Breach ,New York ,(1976)

    [6] F. Jona, Ferroelectric Crystals. Progamon Press, New York,(1962)

    [7] O. Saburi“ Properties of Semiconductive Barium Titanates” ,J.Phys.Soc.Jan, 14(9)pp1159-1174 ,(1959)

    [8] K.W Kirby and B.A Wechsler “Phase Relations in the Barium Titanate Oxide System ”J. Am. Ceram. Soc 74 pp1841-1847,(1991)

    [9] H. M. O Bryan and Thomson “Temperature-Dependent Phase Boundaries for BaTiO4,Ba4Ti13O30 and Ba6Ti17O40 J. Am. Ceram. Soc, 68(2)pp70-72 (1985)

    [10] H. M. O, Bryan and J. Thomson, ”Phase Equilibrium in the BaO-TiO2 J. Am. Ceram. Soc.(19)pp33-34, (1951)

    [11] V. Krasevec, M. Drofenik and D. Kolar “Toptaxy between BaTiO3 and Ba6Ti17O40”J. Am. Ceram. Soc, (8)pp193-195 ,(1987)

    [12] O. Eibl, P. Pongratz and P. Skalicky “Formation of (111) Twins in BaTiO3 Ceramics J. Am. Ceram. Soc(8)pp195-197,(1987)

    [13] Y. H. Hu, M. P. Harmer and D. M. Smyth, “solubility of BaO in BaTiO3 J. Am. Ceram. Soc. 68(7)pp372-376,(1985)
    [14] R. K. Sharma, N. Hchan and D. M. Smyth “Solubility of TiO2 in BaTiO3 “.J. Am. Ceram. Soc 64(8)pp372-376,(1981)
    [15] F. Kulesar,”A microstructure Study of Barium Titanate Ceramics J. Am. Ceram. Soc. 39(13)pp13-19,(1959)

    [16] J. S. Choi and H. G Kim ,”Influence of Stoichiometry and Impurity on the Sintering Behavior of Barium Titanate Ceramics. J. Mat. Sci (27)pp1285-1290,(1992)

    [17] D. F. K.Hennings R. Janssen, and P. J. L Reynen ”Control of Liquid Enhanced Discontinuous Grain Growth in Barium Titanate., J.Am. Ceram. Soc 70(1)pp23-27,(1987)

    [18] J. K. Lee and K. S. Hong , “Roles of Ba/Ti ratios in the Dielectric Properties of BaTiO3 Ceramics” J. Am. Ceram. Soc 84 (9) pp2001-2006, (2001)

    [19] D. Hennings ”Barium Titanate Based Ceramic Materials for Dielectric” Use.J High Technology Ceramics 3,(1987)

    [20] B. M. Kulwicki ”PTC Material Technology” J. Am. Ceram .Soc p138,(1981)

    [21] G. H. Jonker ”Some Aspects of Semiconducting Barium Titanate” Solid State Electron. 7 p895,(1964)

    [22] W. Heywang “Barium Titanate as a Semiconductor with Blocking Layer”Solid State Electron, 3 p51,(1961)

    [23] O. Saburi”Experimental Research in Semiconducting Barium Titanate” Report of Murata Mfg. Co,Ltd. Technical Laboratory,Kyoto,Japan. Ceram. Abstr. (1961)

    [24] W. Heywang “Resistivity Anomaly in Doped Barium Titanate” J. Am. Ceram. Soc 47, [10] p484 (1964)

    [25] J. B. MacChesney and J. F. Potter “Factors and Mechanisms Affecting the Postive Temperature Coefficient of Resistivity of Barium Titanate” J. Am. Ceram. Soc 48[2],(1965)

    [26] W. Heywang “Barium titanate as a PTC thermistor”, Solid-state Electronics vol. pp351-358,(1961)

    [27] H. Chazono ,Y. Mizuno and H.Kishi “Phase transition behaviors of BaTiO3-BaZrO3 solid solutions under high direct current bias fields”,J.Mater.Res,Vol.17 No.2 Feb,(2002)

    [28] R. C. Kell and N. J. Hellicar “Structure transitions in Barium Titanate Zirconate Transducer Materials” Acustica 6. pp235-238, (1956)
    [29] Randall M. German “Sintering theory and practice”New York Wiley, (1996)

    [32] T. N. Verbistkaja,G. SZhdanow, Y. N. Venevtsev,and S.P. Solo viev,”Electrical and X-ray Diffraction Studies of BaTiO3-BaZrO3 System “Sov.Phys-Crystallogr,(3)pp182-192,(1985)

    [30] Yamamoto, Bri. Ceram. Trans 94 (5)pp196-200.(1995)

    [31] H. M. O, Bryan and J. Thomson,”Phase Rqualibria in the TiO2-Rich Region of the System BaO-TiO2” J. Am. Ceram Soc. 57 (12) pp522-526, (1974)

    [32] H. Heydrich and U. Knauer, “Grain Boundary Effects in Ferroelectric Barium Titanate”, Ferroelectric .31,pp131-156(1981)

    [33] I. Burn and G.H Maher” High resistivity BaTiO3 ceramics sintered in CO-CO2 atmospheres” J. mater. Sci. 10 p633, (1975)

    [34] N. G. Eror,I.Burn and G. H. Maher: U.S. Patent , (1975)

    [35] 施敏原著,張俊彥譯”半導體元件物理與製作技術” (2001)

    [36] Bowen, Uhlmann “Introduction to Ceramics” Wiley, New York, (1976)

    [37] Y. M Chiang, P. Dunbar. W. Birnie, David Kingery, “Principles for Ceramic Science and Engineering ” Physical Ceramics (1997)

    [38] D. Hennings ”Diffusion Ferroelectric Phase Transtion Ba(Ti1-yZry)O3 Ceramics ”J. Am. Ceram. Soc. 65 (11)pp539-544 (1982)

    [39] M. Atoji, “Semiempircal method based on molecular polarizabilities and atomoc radii” J.Chem.Phys 25.p174 (1956)

    [40] H. Gollish, “Pseudopotentials that work: From H to Pu” J. Phys. B 17.p1463 (1984)

    [41] W. Zang and P. Soven.” Density-functional approach to local-field effects in finite systems: Photoabsorption in the rare gases Phys.Rev.A,21 p1561, (1980)

    [42] T. P. Guella, T.M Miller, J. A Bederson,. Stocksale and Jaduszliwer,.”Polarizability of 5s25p(2P1 / 2) atomic indium”,Phys.Rev.A.29.p2977 (1984)

    [43] T. M Miller, and B. Bederson,Adv. At. Mol. Phys.13.1 “For simplicity .any value in table 2 which has not charged since (1977)

    [44]吳朗,電子陶瓷[介電陶瓷], 全欣出版社,(1994)

    [45] N. Abdelmoula, A. Cheikhrouhou,et.al“Oxygen Deficiency Effects upon Structure,Magnetic and Electrical Properties of Doped Manganite Oxide” Phys. state. sol. (a) 180, p533 (2000)

    下載圖示 校內:立即公開
    校外:2005-09-02公開
    QR CODE