簡易檢索 / 詳目顯示

研究生: 謝慧冰
Cheah, Hoi-Pin
論文名稱: 攪拌剪應力是玻尿酸醱酵放大設計之關鍵因素
Agitation Shear Force is a Critical Factor of Scale up of Hyaluronic Acid Fermentation
指導教授: 陳特良
Chen, Teh-Liang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 69
中文關鍵詞: 玻尿酸醱酵鏈球菌
外文關鍵詞: Hyaluronic acid fermentation, Streptococcus zooepidemicus
相關次數: 點閱:83下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討以Streptococcus zooepidemicus ATCC 39920醱酵生產玻尿酸之程序中,攪拌速率對菌體生長以及玻尿酸生產之影響。研究首先發現,在相同攪拌速率下,溶氧值保持在飽和溶氧值的25%以上時,即不會影響玻尿酸的生產。至於攪拌速率對玻尿酸生產的影響可分為兩部分來說明:(一) 當攪拌速率從200 rpm增加到600 rpm時,玻尿酸的產量隨著攪拌速率的提高而增加,然而氧氣傳送係數與細胞攝取養分的速率並不影響玻尿酸生產;顯然地,玻尿酸產量之提高是因為細胞受到剪應力刺激所致。(二) 但是,當攪拌速率從600 rpm增加至800 rpm時,玻尿酸的產量反而下降;推測其原因乃在於剪應力過大,反而不利於玻尿酸之生產。此外,當攪拌速率在200至800 rpm這範圍內,所得到之玻尿酸分子量介於1.21-1.34×106 Da之間,此數據顯示,攪拌速率對玻尿酸的分子量並無顯著之影響。綜合以上結果,本研究認為攪拌產生之剪應力是鏈球菌醱酵生產玻尿酸製程放大的關鍵因素。

    The effect of agitation rate on the production of hyaluronic acid (HA) by Streptococcus zooepidemicus ATCC 39920 was investigated in this study. The result first showed that under a specified agitation rate, the production of HA was not influenced by the level of dissolved oxygen (DO) when DO was kept above 25% of saturation. The influence of agitation rate on HA production could be described as follows: (1) The yield of HA increased with agitation rate in the range from 200 to 600 rpm. Since the results showed that both oxygen transfer coefficient and nutrient assimilation rate did not affect the production of HA, the increase in the yield of HA could result from the increase in shear force. (2) The yield of HA decreased when agitation rate increased from 600 to 800 rpm, which might attribute to the inhibition in HA production by extremely high shear force. In addition, the molecular weight of the obtained HA was between 1.21×106 Da and 1.34×106 Da in the range of 200 to 600 rpm. The result indicates that the molecular weight of HA is not significantly affected by agitation rate. Based on the above findings, agitation shear force is thought to be the critical factor for scale up of HA fermentation.

    目錄 頁數 中文摘要 I 英文摘要 Ⅱ 誌謝 Ⅲ 總目錄 Ⅳ 表目錄 Ⅶ 圖目錄 Ⅷ 符號 Ⅹ 第一章 緒論 1 1-1 前言 1 1-2 玻尿酸的結構 2 1-2-1 一級結構與二級結構 2 1-2-2 三級結構 2 1-3 玻尿酸的來源 4 1-4 玻尿酸之生化合成 5 1-5 玻尿酸之物性 5 1-5-1 玻尿酸鈉鹽在水溶液之熱穩定性 5 1-5-2 玻尿酸之黏彈性 5 1-5-3 玻尿酸的分子量 7 1-5-4 滲透壓 7 1-6 玻尿酸的應用 8 1-6-1 玻尿酸於醫學上的應用 8 1-6-2 玻尿酸於化妝品的應用 10 1-6-3 玻尿酸於保健食品的應用 10 1-7 氧氣質量傳送對醱酵程序之影響 11 1-8 文獻回顧 14 1-9 研究目的 16 第二章 實驗材料和方法 17 2-1 菌株及藥品 17 2-1-1 菌株 17 2-1-2 實驗藥品 17 2-2 實驗儀器與裝置 18 2-2-1 實驗儀器 18 2-2-2 實驗裝置 19 2-3 培養基組成 21 2-4 實驗方法 22 2-4-1 菌體的活化前培養和保存 22 2-4-2 菌株活化 22 2-4-3 前培養 23 2-4-4 醱酵實驗 23 2-4-5 實驗流程 23 2-5 分析方法 25 2-5-1 菌體濃度分析方法 25 2-5-2 玻尿酸含量的測定 27 2-5-3 玻尿酸之純化 30 2-5-4 玻尿酸分子量分析方法 31 2-5-5 氧氣傳送係數測定 33 第三章 結果與討論 36 3-1 玻尿酸醱酵對氧氣的需求 36 3-2 攪拌速率對玻尿酸產量的影響 39 3-3 攪拌速率從200 rpm增加到600 rpm時,影響玻 尿酸生產之原因 44 3-3-1 菌體攝取養分速率的情況 44 3-3-2 氧氣質傳係數對玻尿酸產量的影響 50 3-3-3 剪應力的作用 59 3-4 攪拌速率從600 rpm增加到800 rpm時,影響玻 尿酸產量之原因 59 3-5 攪拌速率對分子量的影響 61 第四章 結論 64 參考文獻 65 自述 69 表目錄 頁數 表2-1 TSB培養基的成分 21 表2-2 培養基的成分 21 表3-1 不同攪拌速率及通氣量下,菌體於對數生長 期之比生長速率 49 表3-2 不同攪拌速率及通氣速率下的氧氣傳送係數 (kLa)值 51 表3-3 不同攪拌速率下,玻尿酸之平均分子量 62

    Armstrong, D.C. and Johns, M.R., “Effect of culture conditions on molecular weight of hyaluronic acid produced by Streptococcus zooepidemicus,” Appl. Environ. Microbiol., 63: 2759-2764 (1997).
    Bailey, J.E. and Ollis, O.F., Biochemical Engineering Fundamentals, 2nd Ed., McGraw-Hill, New York, Transport Phenomena in Bioprocess System., Pp. 459-460 (1986).
    Balazs, E., “The physical properties of synovial fluid and the specific role of hyaluronic acid,” Curr. Ther. Res., 47: 437–443 (1990).
    Bitter, T. and Muir, H.M., “A modified uronic acid carbazole reaction,” Anal Biochem, 4: 330-334 (1962).
    Bothner, H. and Wik, O., “Rheology of hyaluronate,” Acta Otolaryngol., 44: 25-30 (1987).
    Blank, L.M., McLaughlin, R.L., Nielsen, L.K., “Stable production of hyaluronic Acid in Streptococcus zooepidemicus chemostats operated at high dilution rate,” Biotechnol. and Bioeng., 90: 685-693 (2004).
    Drobink, J., “Hyaluronan in drug delivery,” Adv. Drug Delivery Rev., 7: 295–308 (1991).
    Fong Chong, B. and Nielsen, L.K., “Aerobic cultivation of Streptococcus zooepidemicus and the role of NADH oxidase,” Biochem. Eng. J., 16: 153–162 (2003).
    Fong Chong, B., Blank, L.M., Mclaughlin, R. and Nielsen, L.K., “Microbial hyaluronic acid production,” Appl. Environ. Microbiol., 66: 341–351 (2005).
    Fouissac, E., Milas, M., and Rinaudo, M., “Shear rate, concentration, molecule weight and temperature viscosity dependencies of hyaluronate, a wormlike polyelectrolyte,” Macromolecules, 26: 6945-6951 (1993).
    Harry, M., James, G., and Michael, R., “Hyaluronic acid capsule and the role of Streptococcal entry into Keratinocytes in invasive skin infertion,” J. Clin. Invest., 98: 1954-1958 (1996).
    Hascall, V.C. and Laurent, T.C., “Hyaluronan : structure and physical properties,”http://www.glycoforum.gr.jp/science/hyaluronan/HA01/HA01E.html, 1997.
    Johns, M.R., Goh, L.T., and Oeggerli, A., “Effect of pH, agitation and aeration on hyaluronic acid produced by Streptococcus zooepidemicus,” Biotechnol. Lett., 16: 507-512 (1994).
    Kendall, F.E., Heidelberger, M., and Dawson, M.H., “A serologically inactive polysaccharide elaborated by mucoid stains of group A hemolytic streptococcus,”J. Biol. Chem.,118: 61-69 (1937).
    Kim, J. H., Yoo, S.T., Kweon, Y.G., Oh, D.K., Park, D.W., Lee, C.H., and Gil, G.H., “Selection of a Streptococcus equi mutant and optimization of culture conditions for the production of high molecular weight hyaluronic acid,” Enzyme and Microb. Technol., 19: 440-445 (1996).
    Laurent, T.C. and Fraser, J.R., “Hyaluronan,” FASEB J., 6: 2397–2404 (1992).
    Laurent, T.C., “Biochemistry of hyaluronan,” Acta Otolaryngol., 442: 7-24 (1987).
    Laurent, T.C., Ryan, M., and Pietruszkiewicz, A., “Fraction of hyaluronic acid. The polydispersity of hyaluronic acid from the bovine vitreous body,” Biochim. Biophys., 42: 476-485 (1960).
    Lowry, K.M. and Beavers, E.M., “Thermal stability of sodium hyaluronate in aqueous solution,” J. Biomed. Mater. Res., 28: 1239-1244 (1994).
    Meyer, K. and Palmer, J.W., “The polysaccharide of the vitreous humor,” J. Biol. Chem., 107: 629-634 (1934).
    Meyer, K., “The biological significance of hyaluronic acid and hyaluronidase,” Physiol. Rev., 27: 335-359 (1947).
    Nimrod, A., Greenman, B., Kanner, D., and Landsberg, M., “High molecular weight sodium hyaluronate,” U.S. Patent. 4784990 (1988).
    Nimrod, A., Greenman, B., Kanner, D., and Landsberg, M., “Method of producing high molecular weight sodium hyaluronate by fermentation of Streptococcus,” U.S. Patent. 4780414 (1988).
    Rapport, M.M., Weissman, B., Linker, A., and Meyer, K., “Isolation of a crystalline disaccharide, hyalobiuronic acid, from hyaluronic acid,” Nature, 168: 996-997 (1951).
    Scott, J.E., Heatley, F., and Hull, W., “Secondary structure of hyaluronate in solution,” Biochem. J., 220: 197-205 (1984).
    Scott, J.E., “Secondary and tertiary structures of hyaluronan in aqueous solution,” http://www.glycoforum.gr.jp/science/hyaluronan/HA02/HA 02E.html, 1998.
    Tribe, L.A., Briens, C.L., and Margaritis, A.A., “Determination of the volumetric mass transfer coefficient using the dynamic "Gas Out-Gas In" method: analysis of errors caused by dissolved oxygen probes,” Biotechnol. and Bioeng., 46: 388-392 (1995).
    Woolcock, J.B., “The capsule of Streptococcus equi.,” J. Gen. Microbiol., 85: 372-375 (1974).
    Yamamoto, H., “Cosmetic effects of dietary hyaluronic acid (extracellular matrix extract),” New food ind., 40: 33-41 (1998).
    王雲萍,生物科技的寵兒—玻尿酸,化工資訊,5: 44-49 (1994)。
    陳士軒,透明質酸之製備與傷口癒合應用,陽明大學碩士論文 (1996)。
    凌沛學,賀豔麗,郭學平,侯麗君,楊曉虹和張天民,透明質酸,中國輕工業出版社 (2000)。
    黃定國,透明質酸之開發與應用,菌種保存及研究簡訊 3:1-9 (2001)。

    下載圖示 校內:立即公開
    校外:2005-08-04公開
    QR CODE