簡易檢索 / 詳目顯示

研究生: 葉修文
Ye, Siou-Wun
論文名稱: 應用微質量感測晶片於糖化血色素之免疫分析研究
Immune Analysis of HbA1c by Micro-Mass Sensing Chips
指導教授: 林裕城
Lin, Yu-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 119
中文關鍵詞: 石英晶體微天平免疫分析糖化血色素化學修飾法
外文關鍵詞: Glycated Hemoglobin, HbA1c, Frequency Shift, Immunology, Cystamine, Chemically Modified
相關次數: 點閱:103下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用石英晶體微天平法應用於免疫分析方法對糖化血色素(Hemoglobin A1c, HbA1c)及血色素(Hemoglobin, Hb)進行頻率檢測,利用化學修飾方法將抗體更穩定塗佈於晶片電極內,以助於偵側待測檢體免疫反應之頻率變化量測並定量分析糖化血色素濃度。實驗中將微質量感測系統結合微質量感測晶片偵測頻率訊號,藉由頻率之變化來分析討論免疫反應接合的多寡,建立免疫分析平台之微質量檢測系統,分別對糖化血色素與血色素做最佳抗體濃度之測試,再經免疫反應時間測試,糖化血色素與血色素之免疫反應時間皆於7分鐘內完成鍵結。實驗結果中,糖化血色素檢測範圍為1~5000 ng/mL,極限濃度為5300 ng/mL,血色素檢測範圍為10~20000 ng/mL,極限濃度為22000 ng/mL,利用整合型微質量檢測平台對混和糖化血色素與血色素之檢體進行濃度-頻率之轉換,成功對糖化血色素佔總血色素之濃度比例為2~16%區間之檢體做出實驗比例與實際比例之比較圖。本研究達到快速偵測且省去前置作業的製程時間與成本以及使用之檢體量只需6 µL,對於日後用於糖尿病之偵測分析提供一個新穎的層面加以分析討論。

    This study presents a method to detect the concentration of glycated hemoglobin (HbA1c) and hemoglobin (Hb) by frequency variation value measurement. This experiment is based on the immunological principle, so we first found out the best antibody concentration that is coated on the chips to catch the antigens we want. In this experiment, cystamine medicines for electrode reaction zone can be chemically modified by the immune reaction time test, glycated hemoglobin and hemoglobin of reaction time are bonded to complete within seven minutes. Experimental results, glycated hemoglobin detection range of 1~5000 ng/mL and limit concentration is 5300 ng/mL, hemoglobin detection range of 10~20000 ng/mL and limit concentration is 22000 ng/mL. Finally, we successful detect the mix sample of glycated hemoglobin and hemoglobin with 2~16% (ratio of glycated hemoglobin in total hemoglobin).

    摘要 I EXTENDED ABSTRACT II 致謝 VII 目錄 VIII 表目錄 XIII 圖目錄 XV 第一章 緒論 1 1-1 研究背景 1 1-2 糖尿病簡介 3 1-2-1 糖尿病 3 1-2-2 糖化血色素 5 1-2-3 糖化血色素的檢測與臨床意義 6 1-3 免疫分析法 7 1-3-1 免疫分析基本理論 8 1-3-2 抗體與抗原定義 8 1-3-3 抗原與抗體的結合力 10 1-3-4 免疫分析檢測種類 10 1-3-5 免疫分析偵測方法 11 1-3-6 傳統酵素聯結免疫吸附分析法 14 1-4 文獻回顧 15 1-5 研究動機與目的 27 1-6 研究架構 28 第二章 微質量檢測平台與晶片設計 29 2-1 石英晶體微天平 29 2-1-1 石英晶體微天平主要原理 29 2-1-2 石英晶體主要構造 30 2-1-3 石英振盪電路之等效電路 31 2-2 微質量檢測平台 32 2-2-1 微質量檢測平台之設置 32 2-2-2 整合型微質量檢測平台之設置 34 2-2-3 微質量感測晶片 35 2-2-4 微質量感測晶片之載體設計 36 2-2-5 石英振盪電路之設計 37 第三章 實驗與研究方法 39 3-1 實驗儀器與設備 39 3-1-1 直流電源供應器 39 3-1-2 頻率計數器 40 3-1-3 電子天秤 42 3-1-4 加熱型攪拌器 43 3-1-5 高速離心機 44 3-2 實驗藥品 45 3-3 實驗方法 46 3-3-1 微質量檢測平台用於免疫偵測之實驗 47 3-3-1-1 免疫分析檢測模型 47 3-3-1-2 表面改質對免疫接合之影響分析 48 3-3-1-3 微質量檢測平台之表面改質時間測試 48 3-3-2 微質量檢測平台之免疫反應時間測試 48 3-3-3 抗體與微質量感測晶片之接合 49 3-3-3-1 抗體對免疫檢測之影響性 49 3-3-3-2 糖化血色素抗體之最佳濃度測試 49 3-3-3-3 血色素抗體之最佳濃度測試 50 3-3-4 糖化血色素與血色素之檢量線實驗 50 3-3-5 混合糖化血色素與血色素檢體之頻率分析 53 3-3-6 整合型微質量檢測平台之頻率分析 55 第四章 結果與討論 56 4-1 檢體使用量之實驗測試 56 4-2 微質量感測晶片之表面改質實驗測試 58 4-2-1 晶片表面改質之檢測結果與比較 58 4-2-2 微質量感測晶片之最佳改質時間測試 60 4-3 微質量檢測平台之實驗參數測試 63 4-3-1 糖化血色素之頻率量測與測試最佳參數 63 4-3-1-1 糖化血色素之免疫反應完成時間測試 63 4-3-1-2 糖化血色素抗體對免疫分析之影響 67 4-3-1-3 糖化血色素檢測之濃度-頻率檢量線實驗 70 4-3-1-4 糖化血色素濃度檢測之飽和度測試 73 4-3-1-5 不同稀釋倍率之糖化血色素量測比較 76 4-3-2 血色素之頻率量測與測試最佳參數 79 4-3-2-1 血色素之免疫反應完成時間測試 79 4-3-2-2 血色素抗體對免疫檢測之影響 83 4-3-2-3 血色素檢測之濃度-頻率檢量線實驗 88 4-3-2-4 血色素濃度檢測之飽和度測試 90 4-3-3 混合糖化血色素與血色素檢體之頻率分析 93 4-3-4 整合型微質量檢測平台之頻率分析 96 4-3-5 檢測不同基底濃度下混合檢體之結果比較 98 4-3-6 針對血液進行糖化血色素含量之檢測分析 104 4-4 印刷電路板(Printed circuit board)與封裝 106 第五章 結論與未來展望 107 5-1 結論 107 5-2 未來展望 112

    [1]http://www.bhp.doh.gov.tw/BHPNet/Web/Index/Index.aspx(衛生福利部國民健康署)
    [2]T. Porstmann and S. T. Kiessig, “Enzyme immunoassay techniques and overview,” Journal of Immunological Methods, 150, pp. 5-21, 1992.
    [3]T. H. Huisman, E. A. Martisand, and A. Dozy, “Chromatography of hemoglobin types on carboxymethylcellulose,” Journal of Laboratory and Clinical Medicine, 52, pp. 312-27, 1958.
    [4]R. M. Bookchin and P. M. Gallop, “Structure of hemoglobin A1c: nature of the N-terminal beta chain blocking group,” Biochemical and Biophysical Research Communications, 32, pp. 86-93, 1968.
    [5]S. Rahbar, O. Blumenfeld, and H. M. Ranney, “Studies of an unusual hemoglobin in patients with diabetes mellitus,” Biochemical and Biophysical Research Communications, 36, pp. 838-43, 1969.
    [6]H. F. Bunn, D. N. Haney, K. H. Gabbay, and P. M. Gallop, “Further identification of the nature and linkage of the carbohydrate in hemoglobin A1c,” Biochemical and Biophysical Research Communications, 67, pp. 103-9, 1975.
    [7]R. J. Koenig, C. M. Peterson, R. L. Jones, C. Saudek, M. Lehrman, and A. Cerami, “Correlation of glucose regulation and hemoglobin A1c in diabetes mellitus,” The New England Journal of Medicine, 295, pp. 417-420, 1976.
    [8]zh.wikipedia.org/wiki/糖化血紅蛋白
    [9]糖化血色素檢測的國際規範及臨床應用 - 義大醫院
    [10]A. Chaubey and B. D. Malhotra, “Mediated biosensors,” Biosensors and Bioelectronics, 17, pp. 441-456, 2002.
    [11]何敏夫,臨床生化學,合記圖書出版社, 1992。
    [12]R. H. Garrett and C. M. Grisham, Biochemistry, Saunders College Publishing, 1995.
    [13]廖國棠,金奈米粒子標記物在免疫分析、DNA序列分析及微管道晶片系統分析上的應用,國立中山大學化學研究所博士論文,民國九十四年。
    [14]E. Engvall and P. Perlmann, “Enzyme-linked immunosorbent assay, Elisa. 3. Quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes,” Journal of Immunology, 109, pp. 129-135, 1972.
    [15]T. Watanabe, Y. Ohkuno, H. Matsuoka, H. Kimura, Y. Sakai, Y. Ohkaru, T. Tanaka, and Y. Kitaura, “Development of a simple whole blood panel test for detection of human heart-type fatty acid-binding protein,” Clinical Biochemistry, 34, pp. 257-263, 2001.
    [16]M. Hedenfalk, P. Adlercreutz, and B. Mattiasson, “Modulation of the measuring range of a radioimmunoassay using an organic water two phase system,” Analytica Chimica Acta, 341, pp. 269-274, 1997. 
    [17]F. Hardy, L. Djavadi-Ohaniance, and M. E. Goldberg, “Measurement of antibody/antigen association rate constants in solution by a method based on the enzyme-linked immunosorbent assay,” Journal of immunological methods, 200, pp. 155-159, 1997.
    [18]P. Onnerfjord, S. Eremin, J. Emneus, and G. Marko-Varga, “Fluorescence polarisation for immunoreagent characterization,” Journal of immunological methods, 213, pp. 31-39, 1998.
    [19]J. A. Schmid and A. Billich, “Simple method for high sensitivity chemiluminescence ELISA using conventional laboratory equipment,” BioTechniques, 22, pp. 278, 1997.
    [20]C. A. Janeway, P. Travers, M. Walport, and M. J. Shlomchik, Immunobiology, 5th edition, Garland Science, 2001.
    [21]I. Bronstein, J. C. Voyta, G. H. G. Thorpe, L. J. Kricka, and G. Armstrong, “Chemiluminescent assay of alkaline phosphatase applied in an ultrasensitive enzyme immunoassay of thyrotropin,” Clinical Chemistry, 35, pp. 1441-1446, 1989.
    [22]E. Ishikawa, S. Hashida, T. Kohno, and K. Hirota, “Ultrasensitive enzyme immunoassay,” Clinica Chimica Acta, 194, pp. 43-55, 1990.
    [23]S. A. Berson and R. S. Yalow, “Immunoassay of endogenous plasma insulin in Man,” Annals of the New York Academy of Sciences, 82, pp. 1157-1175, 1959. 
    [24]G. Sakai, K. Ogata, T. Uda, N. Miura, and N. Yamazoe, “A surface plasmon resonance-based immunosensor for highly sensitive detection of morphine,” Sensors and Actuators B-Chemical, 49, pp. 5-12, 1998.
    [25]B. K. Oh, Y. K. Kim, W. Lee, Y. M. Bae, W. H. Lee, and J. W. Choi, “Immunosensor for detection of legionella pneumophila using surface plasmon resonance,” Biosensors and Bioelectronics, 18, pp. 605-611, 2003.
    [26]W. D. Wilson, “Analyzing Biomolecular Interactions,” Science, 295, pp. 2103-2105, 2002.
    [27]B. K. Oh, W. Lee, B. S. Chun, Y. M. Bae, W. H. Lee, and J. W. Choi, “The fabrication of protein chip based on surface plasmonresonance for detection of pathogens,” Biosensors and Bioelectronics, 20, pp. 1847-1850, 2004.
    [28]S. Hearty, P. J. Conroy, B. V. Ayyar, B. Byrne, and R. O’Kennedy, “Surface plasmon resonance for vaccine design and efficacy studies: recent applications and future trends,” Expert Review of Vaccines, 9, pp. 645-664, 2010.
    [29]G. U. Lee, D. A. Kidwell, and R. J. Colton, “Sensing discrete streptavidin-biotin interactions with atomic force microscopy,” Langmuir, 10, pp. 354-357, 1994.
    [30]L. Li, S. Chen, S. Oh, and S. Jiang, “In situ single-molecule detection of antibody-antigen binding by tapping-mode atomic force microscopy,” Analytical Chemistry, 74, pp. 6017-6022, 2002. 
    [31]F. Cecchet, A. S. Duwez, S. Gabriel, C. Jérôme, R. Jérôme, K. Glinel, S. D. Champagne, A. M. Jonas, and B. Nysten, “Atomic Force Microscopy Investigation of the Morphology and the Biological Activity of Protein-Modified Surfaces for Bio- andImmunosensors,” Analytical Chemistry, 79, pp. 6488-6495, 2007.
    [32]G. Kada, F. Kienberger, and P. Hinterdorfer, “Atomic force microscopy in bionanotechnology,” Nano Today, 13, pp. 12-19, 2008.
    [33]S. Schluecker, B. Kuestner, A. Punge, R. Bonfig, A. Marx, and P. Stroebel, “Immuno-Raman microspectroscopy: in situ detection of antigens in tissue specimens by surface-enhanced Raman scattering,” Journal of Raman Spectroscopy, 37, pp. 719-721, 2006.
    [34]D. A. Stuart, A. J. Haes, C. R. Yonzon, E. M. Hicks, and R. P. Van Duyne, “Biological applications of localised surface plasmonic phenomenae,” IEE Proceedings-Nanobiotechnology, 152, pp. 13-32, 2005.
    [35]D. S. Grubisha, R. J. Lipert, H.-Y. Park, J. Driskell, and M. D. Porter, “Femtomolar Detection of Prostate-SpecificAntigen: An Immunoassay Based onSurface-Enhanced Raman Scattering andImmunogold Labels,” Analytical Chemistry, 75, pp. 5936-5943, 2003. 
    [36]S. H. Lee, D. D. Stubbs, J. Cairney, and W. D. Hunt, “Rapid detection of bacterial spores using a quartz crystal microbalance (QCM) immunoassay,” IEEE Sensors Journal, 5, pp. 737-743, 2005.
    [37]S. Kurosawa, H. Aizawa, M. Tozuka, M. Nakamura, and J.-W. Park, “Immunosensors using a quartz crystal microbalance,” Measurement Science and Technology, 14, pp. 1882-1887, 2003.
    [38]J. P. Gosling, “A decade of development in immunoassay methodology,” Clinical Chemistry, 36, pp. 1408-1427, 1990.
    [39]G. Sauerbrey, “Use of vibrating quartz for thin film weighing and
    microweighing,” Zeitschrift für Physikalische Chemie, 155, pp. 206-222, 1959.
    [40]P. L. Konash and G. J. Bastiaans, “Piezoelectric crystals as detectors in liquid chromatography,” Analytical Chemistry, 52, pp. 1929-1931, 1980.
    [41]M. Thompson, C. L. Arthur, and G. K. Dhaliwal, “Liquid-phase piezoelectric and acoustic transmission studies of interfacial immunochemistry,” Analytical Chemistry, 58, pp. 1206-1209, 1986.
    [42]D. M. Gryte, M. D. Ward, and W. S. Hu, ‘‘Real-Time Measurement of Anchorage-Dependent Cell Adhesion Using a Quartz Crystal Microbalance,’’ Biotechnology Progress, 9, pp. 105-108, 1993.
    [43]D. N. Furlong and R. N. Lamb, ‘‘Controlled Wettability of Quartz Surfaces,’’ Journal of the Chemical Society, 78, pp. 61-73, 1982.
    [44]T. Tatsuma, Y. Watanabe, and N. Oyama, “Multichannel Quartz Crystal Microbalance,” Analytical Chemistry, 71, pp. 3632-3636, 1999.
    [45]S. M. Wong, A. J. Eun, F. T. Chew, S. F. Li, and L. Chew, ‘‘Detection of two orchid viruses using quartz crystal microbalance (QCM) immunosensors,’’ Journal of Virological Methods, 99, pp. 71-79, 2002.
    [46]N. Y. Pan and J. S. Shih, ‘‘Piezoelectric Crystal IgG Immuno sensor Based on Fullerene Immobilized C60-Anti human IgG,’’ Sensors and Actuators B-Chemical, 98, pp. 180-187, 2004.
    [47]S. F. Chou, W. L. Hsu, J. M. Hwang, and C. Y. Chen, ‘‘Determination of α-Fetoprotein in Human Serum by a Quartz Crystal Microbalance-based Immunosensor,’’ Clinical Chemistry, 48, pp. 913-918, 2002.

    無法下載圖示 校內:2026-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE