| 研究生: |
黃天德 Huang, Tian-De |
|---|---|
| 論文名稱: |
IEEE 802.15.4基頻處理器之設計與實現 The Design and Implementation of IEEE 802.15.4 Baseband Processor |
| 指導教授: |
林輝堂
Lin, Hui-Tang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 直接序列展頻 、無線感測器網路 、差分編碼 、調變 |
| 外文關鍵詞: | IEEE 802.15.4, O-QPSK, BPSK |
| 相關次數: | 點閱:61 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著無線網路以及微機電的發展,一種新型態的網路—無線感測器網路亦被廣泛的研究;在無線感測器網路上,資料傳輸並不像傳統網路般強調頻寬的利用率,而是著重在低成本、低電源消耗的議題上,因此大部份強調高傳輸率的無線網路標準並不適合於無線感測器網路上使用。
IEEE 802.15.4標準是專為低速無線個人區域網路而定的無線傳輸標準,因此它十分適合於無線感測器網路;如同IEEE 802.11系列標準,IEEE 802.15.4定義了實體層與媒體存取層的規格,其中在實體層方面,IEEE 802.15.4標準提供了868/915 MHz與2.4 GHz兩種實體層規格,並分別提供20kb/s、40kb/s與250kb/s的傳輸速率。
就像其他的無線傳輸標準,IEEE 802.15.4在傳輸上亦會有非理想的通道效應如雜訊、載波頻率偏移、載波相位偏移等影響,在本論文中,我們提出一個同步演算法,利用IEEE 802.15.4標準中實體層封包的preamble欄位以及差分解碼技術來估計並且補償載波頻率偏移與相位偏移,而不影響資料部份的接收;同時,我們也在本論文中提出了IEEE 802.15.4標準的基頻處理器之硬體架構,並且透過模擬在考慮雜訊、載波頻率偏移、載波相位偏移的情況下,驗證了該架構與同步演算法的可行性。
With the development of wireless networks and micro electro mechanical systems, wireless sensor networks, a new kind of networks, have been studied popularly. In wireless sensor networks, the usage of bandwidth is not as important as in traditional networks, but the issues of low cost and low power consumption are emphasized. Due to above reasons, most standard which emphasize the high transmission rate in wireless networks are not suitable for wireless sensor networks.
IEEE 802.15.4 standard is the wireless transmission standard for low-rate wireless personal area networks (LR-WPANs), so it is very suitable for wireless sensor networks. Like IEEE 802.11x series standards, IEEE 802.15.4 defines the specifications of the physical (PHY) layer and media access control (MAC) layer. In PHY layer, IEEE 802.15.4 operates on two different frequency bands – 868/915 MHz and 2.4 GHz, and it offers transmission rates of 20kb/s, 40kb/s, and 250kb/s respectively.
Like in other standards for wireless communication, the transmission in IEEE 802.15.4 would be affected by the non-ideal channel effects, including noise, carrier frequency offset (CFO), carrier phase offset (CPO). In this thesis, we implement a synchronization algorithm which estimates and compensates the CFO and CPO but not affect the receiving of data by using the preamble field of IEEE 802.15.4 phy protocol data unit (PPDU) and differential decoding technology. We also provide a hardware architecture of IEEE 802.15.4 baseband processor. We demonstrate the effectiveness of the synchronization algorithm and architecture by simulations which include the influences of noise, CFO, and CPO.
[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A Survey of Sensor Networks”, IEEE Communications Magazine, 40(8):102-114, August 2002.
[2] C. Shen, C. Srisathapornphat, C. Jaikaeo, “Sensor Information Networking Architecture and Applications”, IEEE Personal Communications, pp52-59, August 2001.
[3] Bult, K., A. Burstein, D. Chang, M. Dong, M. Fielding, E. Kruglick, J. Ho, F. Lin, T.-H. Lin, W.J. Kaiser, H. Marcy, R. Mukai, P. Nelson, F. Newberg, K.S.J. Pister, G. Pottie, H. Sanchez, O.M. Stafsudd, K.B. Tan, C.M. Ward, S. Xue, and J. Yao, “Low power systems for wireless microsensors”, IEEE Proceedings of International Symposium on Low Power Electronics and Design. Monterry, Calif,1996..
[4] V. Tsiatsis , S. Zimbeck , M. Srivastava, “Architecture Strategies for Energy-Efficient Packet Forwarding in Wireless Sensor Networks”, Proceedings, of the 2001 international symposium on Low power electronics and design, pp. 92-95, 2001
[5] E. Callaway, P. Gorday, L. Hester, J.A. Gutierrez, M. Naeve, B. Heile, V. Bahl, “Home Networking with IEEE 802.15.4: A Developing Standard for Low- Rate Wireless Personal Area Networks”, IEEE Communications Magazine, Vol. 40 No. 8, pp. 70--77, August 2002.
[6] “Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs)”, IEEE std 802.15.4 – 2003.
[7] “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Higher-Speed Physical Layer Extension in the 5GHz Band”, IEEE 802.11a-1999.
[8] “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Higher-Speed Physical Layer Extension in the 2.4GHz Band”, IEEE 802.11b-1999.
[9] Charles N. Thurwachter Jr, “Data and telecommunications: systems and applications”, Prentice-Hall, 2000.
[10] Branimir Boskovic, Milan Markovic, “On Spread Spectrum Modulation Techniques Applied in IEEE802.11 Wireless LAN Standard”
[11] Vincent Vermeer “Wireless LAN: Why IEEE802.11 DSSS?”, 2000 IEEE Lucent Technologies
[12] Ziemer. Tranter, “Principle of communications, System, Modulation, and Noise’, 4rd ed, John Willey and sons, 1986
[13] “Synchronization Techniques for Digital Receivers”, Umberto Mengali and Aldo N. D’Andrea, Plenum Press 1997.
[14] “Planar Filtered Techniques for Burst Mode Carrier Synchronization”, M.P.Fitz, Conf. Rec. GLOBECOM’91, Phoenix, Arizona, Dec. 2-5 1991, paper 12.1.
[15] “Further Results in the Fast Estimation of a Single Frequency”, M.P.Fitz, IEEE Trans. Commun., COM-42, 862-864, March 1994.
[16] “Wireless communications – Principles and Practice”, Theodore S. Rappaport, Prentice Hall 1996
[17] “Carrier Frequency Recovery in All-Digital Modems for Burst-Mode Transmissions”, M.Luise and R.Regiannini, IEEE Trans. Commun.., COM-43, 1169-1178,1995
[18] J. Bergeron, Writing Testbenches: Functional Verification of HDL Models, Second Edition, Teamwork International, 2001
[19] 蔡維昌 “Cell-Based IC Design Concepts Training Manual”, CIC, Jan. 2005
[20] 蔡長安 “FPGA Design with ISE Foundation Training Manual”, CIC, Jan. 2005.
[21] http://www.xilinx.com/
[22] http://www.modelsim.com/
[23] 洪建仁 “一個應用於直接序列展頻無線區域網路使用差異解碼技術之基頻處理器” 2003年碩士論文,交通大學
[24] 林永權 “IEEE 802.11b 無線區域網路於實體層之系統設計與韌體實現” 2003年碩士論文,成功大學
[25] 汪克群 “無線感測器網路媒體存取中資料傳輸模組設計與實現” 2004年碩士論文,元智大學
[26] 徐旻傑 “無線感測器網路媒體存取中資料控管模組研究與實現” 2004年碩士論文,元智大學