簡易檢索 / 詳目顯示

研究生: 謝孟勳
Xie, Meng-Xun
論文名稱: (110)取向之鋯鈦酸鉛薄膜的鐵電/鐵彈結構分析與操控
Analysis and manipulation of ferroelectric/ferroelastic architectures in (110)-oriented PZT thin films
指導教授: 陳宜君
Chen, Yi-Chun
楊展其
Yang, Jan-Chi
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 97
中文關鍵詞: 鋯鈦酸鉛(110)取向鐵電材料電操控壓電力顯微鏡
外文關鍵詞: Lead zirconate titanate, (110)-oriented, Ferroelectricity, Electrical control
相關次數: 點閱:134下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 複雜性氧化物具有十分豐富的物理性質,其中包含了高溫超導、巨磁阻、焦電、壓電、介電、半導、導電、磁性與光性等優異功能特性。在應用層面,這些新穎的功能性往往還能藉由外加的電場、磁場與應力等刺激來進一步調控其外在功能表現,這也提供了未來新興電子元件的開發一個很好的機會。在此之中最具代表性的材料為鋯鈦酸鉛(Pb(Zr1-xTix)O3,PZT),其具有優異的壓電特性而成為目前工業最常見的電能-力學能轉換元件,目前也有豐富的學術研究試圖進一步提升其可用性。鋯鈦酸鉛除了壓電特性以外在室溫下還具有鐵電特性,根據成長在不同取向的基板會有不同的鐵電電域結構,然而大多數的研究都集中於成長於(100)取向基板之鋯鈦酸鉛薄膜,對於成長於其他取向基板的研究很稀少。在本研究中,我們以成長於(110)取向基板之鋯鈦酸鉛薄膜作為研究材料,我們使用壓電力顯微鏡( Piezoresponse force microscopy, PFM)研究此材料的電域結構並發現此材料具有兩種共存的相,這是在先前的研究沒有被報導過的。此外,我們發現此兩相共存系統還能藉由外加電場的調控達到這兩種相之間的相轉換,顯示此材料有潛力能設計成多功能相轉變記憶體。我們也透過實驗證實兩相的分布與空間電荷有密切的關係,藉由探針注入的電荷使得有效空間電荷的增減是造成兩相轉換的主要物理機制。

    Complex oxides provide a variety of intriguing functionalities, including high temperature superconductivity, multiferroics high-dielectricity, colossal magnetoresistance, and so on. Abundant researches related to the modulation of these intriguing phenomena via external stimuli have been accomplished, which provide great insight into the development of next-generation electronic devices. Among these functional materials, Lead zirconate titanate (Pb(ZrxTi1-x)O3, PZT) is the most commonly studied materials in both industry and academic community due to its remarkable piezoelectricity and corresponding adjustability under controllable fabrication conditions. Ferroelectric PZT thin films exhibit very different ferroelectric domain structure dependent on the orientation of epitaxial substrate. However, most of previous researches focus on (100)-oriented PZT system while the researches for others epitaxial orientation remains scarce. In this study, we investigate the ferroelectric domain structure and dynamic switching behavior of (110)-oriented Pb(Zr0.2Ti0.8)O3 thin films by employing piezoresponse force microscopy (PFM). We observe the (110)-oriented PZT behaves an unreported mixed-phase system which is composed of two degenerate phases, T- and M-phase. It is striking to note that a phase transition between T- and M-phase could be driven by the scanning of a biased AFM tip, which indicates the (110)-oriented PZT has potential for the development of novel phase transition memory. Our results also reveals that the mechanism of phase transition and the final configuration of T- and M-phase is dominant by the evolution of the space charge distribution driven by electric field.

    摘要 II Abstract IV 致謝 IX 目錄 XI 圖目錄 XIII 第一章 緒論 1 第二章 文獻回顧 3 2.1複雜性氧化物 3 2.2鐵電材料簡介 4 2.3鈣鈦礦結構 7 2.4鋯鈦酸鉛 9 2.4.1變形相邊界(morphotropic phase boundary, MPB) 10 2.4.2 (100)取向之鋯鈦酸鉛薄膜之電域結構 13 2.4.3鋯鈦酸鉛成長於不同取向之基板的鐵電性質研究 16 第三章 實驗原理與方法 19 3.1掃描式探針顯微鏡 19 3.1.1 原子力顯微鏡 22 3.1.2 壓電力顯微鏡 23 3.1.3 表面電位顯微鏡 25 3.1.4 實驗量測方法 27 3.2拉曼光譜 29 3.3照光實驗架設 33 第四章 結果與討論 34 4.1鋯鈦酸鉛薄膜的共存相 35 4.2鋯鈦酸鉛薄膜的電域結構 38 4.3鋯鈦酸鉛薄膜的電操控 48 4.4電壓造成相轉變之物理機制探討 59 4.5鈦酸鉛薄膜的電域結構 70 4.6鈦酸鉛薄膜的電操控 78 4.7鋯鈦酸鉛薄膜的光操控 84 第五章 結論 93 參考文獻 95

    [1] Toshio Mitsui, Itaru Tatsuzaki and Eiji Nakamura, “An introduction to the physics of ferroelectrics”, Gordon and Breach Science Publishers, New York, (1976).
    [2] Kenji Uchino, “Ferroelectric Devices”, Marcel Dekker, Inc., New York, (2000).
    [3] Berdard Jaffe, William R. Cook and Hans Jaffe, “Piezoelectric Ceramics”, Academic Press Inc., London, (1970).
    [4] William D. Callister, Jr., “Material Science And Engineering”, John Wiley & Sons Inc., (London).
    [5] 鐘維烈, “鐵電體物理學”, 科學出版社, (2000).
    [6] Patrycja Paruch, Thierry Giamarchi, Thomas Tybell and Jean-Marc Triscone, “Nanoscale studies of domain wall motion in epitaxial ferroelectric thin films”, American Physical Society, APS March Meeting, March, pp.21-25, (2005).
    [7] Yuhuan. Xu, “Ferroelectric Material and Their Application”, Elsevier, Amsterdam, (1990).
    [8] Ian M. Reaney, Enrico L. Colla and Nava Setter, “Dielectric and Structural Characteristics of Ba- and Sr-based Complex Perovskites as a Function of Tolerance Factor”, Jpn. J. Appl., Vol. 33, pp. 3984-3990, (1994).
    [9] A. J. Moulson and J. M. Herbert, “Electroceramics Materials Properties Applications”, Chapman & Hall, New York, (1990).
    [10] Seung-Hyun KIM, Jeong-Suong YANG, Chang Young KOO, Jung-Hoon YEOM, “Dielectric and Electromechanical Properties of Pb(Zr,Ti)O3 Thin Films for Piezo-Microelectromechanical System Devices”, Jpn. J. Appl. Phys. Vol. 42 pp. 5952–5955, (2003).
    [11] Dillon D. Fong, G. Brian Stephenson,Stephen K. Streiffer,Jeffrey A. Eastman,Orlando Auciello, Paul H. Fuoss,Carol Thompson“Ferroelectricity in Ultrathin Perovskite Films” SCIENCE VOL 304 JUNE,(2004).
    [12] David Walker, Pam A. Thomas, and Steve P. Collins“A comprehensive investigation of the structural properties of ferroelectric PbZr0.2Ti0.8O3thin films grown by PLD” Phys. Status Solidi A 206, No. 8, 1799–1803 (2009).
    [13] A. Roelofs, N. A. Pertseva and R. Waser, F. Schlaphof and L. M. Eng“Depolarizing-field-mediated 180° switching in ferroelectric thin films with 90° domains” APPLIED PHYSICS LETTERS VOLUME 80, NUMBER 8 25 FEBRUARY (2002).
    [14] Liviu C. Tanase, Laura E. Abramiuc, Dana G. Popescu, Ana-Maria Trandafir,Nicoleta G. Apostol, Ioana C. Bucur,Lumini¸ta Hrib,Lucian Pintilie, Iuliana Pasuk,Lucian Trupina,1 and Cristian M. Teodorescu“Polarization Orientation in Lead Zirconate Titanate (001) Thin Films Driven by the Interface with the Substrate” PHYSICAL REVIEW APPLIED 10, 034020 (2018).
    [15] P. Wurfel and I. P. Batra“Depolarization-Field-Induced Instability in Thin Ferroelectric Film Experiment and Theory” PHYSICAL REVIEB VOLUME 8, NUMBER 11 DECEMBER (1973)
    [16] Michal Lopuszynski, Jacek A. Majewski“On Ordering in Ternary Nitride Semiconducting Alloys” arXiv:1108.2447v1 [cond-mat.mtrl-sci] Aug (2011).
    [17] Ruijuan Xu, Shi Liu, Ilya Grinberg, J. Karthik1, Anoop R. Damodaran, Andrew M. Rappe and LaneW. Martin“Ferroelectric polarization reversal via successive ferroelastic transitions” NATURE MATERIALS VOL 14 JANUARY (2015).
    [18] 陳力俊, “材料電子顯微鏡學”, 行政院國家科學委員會精密儀器發展中心, (2003).
    [19] Sergei N. Magonov, and Myung-Hwan Whangbo, New York VCH, (1996).
    [20] Morris, V. J., Kirby, A. R., Gunning, A. P., “Atomic Force Microscopy for Biologists”, Imperial College Press: London, (1999).
    [21] R. Liithi, H. Haefke, K.-P. Meyer, E. Meyer, L. Howald, and H.-J. Gijntherodt, “Surface and domain structures of ferroelectric crystals studied with scanning force microscopy”, J. Appl. Phys., 74, 12, (1993).
    [22] 王洸富, 屏蔽電荷對180度域壁成核動態機制之影響”, 成功大學, 碩士論文, (2010).
    [23] 曾賢德、果尚志,“奈米電性之掃描探針量測技術”, 物理雙月刊(廿五卷五期), (2003).
    [24] J. R. Ferraro, K. Nakamoto, and C. W. Brown, Introduction Raman Spectroscopy, Academic Press, San Diego, 1994
    [25] 李育懷, “(110)晶體取向鉛鋯鈦薄膜超結構分析”, 成功大學, 碩士論文, (2019).
    [26] A. Schilling, T. B. Adams,R. M. Bowman,J. M. Gregg,G. Catalan, and J. F. Scott“Scaling of domain periodicity with thickness measured in BaTiO3 single crystal lamellae and comparison with other ferroics”, PHYSICAL REVIEW B 74, 024115 (2006).

    下載圖示 校內:2021-08-01公開
    校外:2021-08-01公開
    QR CODE