簡易檢索 / 詳目顯示

研究生: 何政昌
Ho, Jeng-Chang
論文名稱: 常壓電漿技術之研究
Research of Atmospheric Pressure Plasma Technology
指導教授: 洪昭南
Hong, Chau-Nan Franklin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 138
中文關鍵詞: 介電質放電常壓冷電漿常壓電漿常壓輝光放電常壓均勻電漿電漿表面處理
外文關鍵詞: atmospheric pressure glow discharge, DBD, atmospheric pressure plasma, plasma surface modification, atmospheric pressure homogeneous plasma, dielectric barrier discharge
相關次數: 點閱:156下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 常壓電漿不需昂貴的真空設備,具備處理量大、可連續式操作的優點。為一種極有潛力的製程技術。然而由於常壓下電漿的熱化時間(Thermalization time)極短,使得在常壓下欲產生均勻冷電漿是一件相常困難的事。僅管利用氦氣能輕易在常壓下產生均勻冷電漿,但氦氣並無反應性而且極為昂貴,因些需發展適用各種氣體之電漿技術。

    本研究目標在建立一個能在常壓下產生均勻冷電漿的系統。運用電極設計、流場、外加電場這三項要素的配合,開發出能廣泛適用於各種氣體的常壓冷電漿系統。我們嘗試過多種不同的電極設計,在經過無數次失敗後,吸取經驗,最後以多管型介電質放電電極陣列並以過濾片分散氣體,以及第三電極的輔助之下,成功的以氬氣在常壓下產生均勻冷電漿。然而氦氣、氬氣之外的氣體仍無法產生肉眼可見的大體積的均勻電漿,離我們預設的目標還有相當遙遠的距離。

    本研究的另一重點是研究常壓冷電漿系統用於電漿表面處理的效果,以空氣、氬氣、氮氣、氦氣、氧氣做為反應氣體,測試電漿對於投影片的處理效果。並以接觸角儀測定其表面能,以掃描式電子顯微鏡觀察其表面變化。在一分鐘的處理時間下,氬氣及氮氣的處理效果最好。在加入第三電極施加偏壓時,氧氣處理效果可觀察到明顯的進步。進一步利用電子顯微鏡觀察投影片表面時,可清楚觀察到電漿對高分子材料表面蝕刻所產生的溝槽,但施加偏壓與否對於表面形貌的影響並不明顯。

    Atmospheric discharges do not need to use the expensive vacuum equipments, and is suitable for continuous operations for mass production in industry. However atmospheric plasma technology remains difficult for most of gases other than helium, which is expensive and not reactive.

    The goal of this study is to establish a homogenous atmospheric non-equilibrium discharge system by designing the electrode, flow field and external biasing. After many attempts, a new design using multiple dielectric electrode arrays is capable of generating homogeneous argon discharges by uniformly distributing gas with a filter plate and accelerating the discharge with a third electrode. However, this design still fails to produce uniform discharges for the gases other than helium and argon.

    Besides, plasma treatments of polymer for surface modifications have been conducted using the new electrode design with air, argon, nitrogen, helium, and oxygen gases. Contact angle measurements and scanning electron microscopy have been used to characterize the surface energy and surface morphology, respectively. The efficiency of plasma cleaning is best for nitrogen and argon gases under the treatment for one minute. By using the third electrode to bias the substrate, the cleaning efficiency can be improved using the third electrode. Although the plasma treatment induces grooves on the polymer surface, the substrate bias does not seem to affect the surface morphology.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 表目錄 VIII 圖目錄 IX 第一章 序論 1 1-1前言 1 1-2 研究動機與目的 3 1-3 各章提要 5 第二章 理論基礎 6 2-1 電漿之種類 6 2-2 非平衡電漿(冷電漿) 14 2-2.1非平衡電漿的定義 14 2-2.2非平衡電漿的種類 18 2-3 平衡電漿(熱電漿) 21 2-4 常壓電漿 25 2-5 輝光放電轉換至電弧放電 27 2-6 常壓冷電漿 31 2-6.1 電暈放電 31 2-6.2 介電質放電 31 2-6.3 介電質的選擇 33 2-7 常壓冷電漿系統的發展 37 2-8 高分子電漿表面處理 41 第三章 實驗方法與步驟 45 3 -1 實驗流程 45 3-2 實驗系統設計 46 3-2.1電極部份 46 3-2.2 反應氣體輸入裝置 46 3-2.3 主電源供應器 47 3-2.4 第三電極 47 3-2.5 輔助電源供應器 47 3-3 實驗材料 48 3-3.1介電層材料 48 3-3.2電極材料 48 3-3.3氣體引入部分 49 3-3.4電極支架部分 49 3.3-5其它材料 50 3-4 實驗步驟 54 3-4.1 電極設計及製作 54 3-4.2 空氣放電測試 54 3-4.3 電漿觀察 54 3-4.4 進行表面處理 54 3-5 分析與鑑定 55 3-5.1 電流與電壓波型量測系統 55 3.5-2 接觸角量測系統 55 3.5-3 表面形態觀察 55 3.5-4 元素分析 55 3.5-5 光譜量測系統 55 第四章 常壓均勻冷電漿電極設計探討 60 4-1 本章內容提要 60 4-1.1 電極設計目標 60 4-1.2 電極設計基本概念 60 4-2 設計大面積常壓冷電漿源 65 4-3 平板型電極介電質放電電極 67 4-3.1 沖孔型金屬網 67 4-3.2 沖孔型金屬網結合氣流 68 4-3.3 沖孔型金屬網結合電場 68 4-3.4 編織型金屬網 69 4-3.5 編織型金屬網電極配合外加電場 70 4-3.6 介電質放電平板型電極總結 71 4-4 表面放電型電極 75 4-4.1 以鋁箔膠帶做為金屬層 76 4-4.2 以編織型金屬網做為金屬層 76 4-4.3第三電極的影響 76 4-5 鑽孔型電極 79 4-6 管狀介電質放電電極陣列 82 4-6.1 設計基本概念 82 4-6.2製作管狀介電質放電電極陣列 82 4-6.3 第三電極的加入 83 4-6.4 氣流的控制 83 4-6.5 第三電極配合氣流的控制 84 4-7 產生常壓均勻冷電漿的探討 88 4-8介電質放電電極陣列設計的演進 90 4-8.1 介電質放電電極陣列的缺點 90 4-8.2 加入spacer 91 4-8.3 以陶瓷膏包覆 91 4-8.4 以焊錫填充法製造介電質放電電極 92 第五章 以管狀介電質放電電極陣列產生電漿進行表面處理 101 5-1 內容提要 101 5-2 電極基本特性測試 101 5-2.1 熱效應的探討 101 5-2.2 不同氣體對放電情況的影響 103 5-2.3 氣體流速對放電情況的影響 103 5-3以管狀介電質放電電極陣列進行表面處理 106 5-3.1 氣體流量對表面處理效率的影響 106 5-3.2 不同氣體的影響 107 5-3.3 不同過濾片的影響 108 5-3.4 偏壓的影響 109 第六章 結論 125 參考文獻 127 自述 139

    [1] Y. P. Raizer, Gas Discharge Physics. New York: Springer-Verlag, 1991
    [2] B.Chapman Glow discharge processes, John Wiley & Sons, Inc. pp. 52, 1980
    [3] B. Eliasson, U. Kogelschatz “Non Equilibrium Volume Plasma Chemical Processing” IEEE transaction on plasma science, v 19, n 6, pp. 1063-1077, 1991
    [4] M. Konuma, Film Deposition by Plasma Techniques, Springer-Verlag, New York, 1992
    [5] M. A. Lieberman, and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing. New York, Wiley, 1994
    [6] W. Elenbaas, The High Pressure Mercury Vapor Discharge. Amsterdam, The Netherlands, North-Holland, 1951
    [7] M. I. Boulos “Thermal plasma Processing” IEEE transactions on plasma science v 19, n 6, pp. 1078-1089, 1991
    [8] E. Marode “Glow-to-Arc Transition” Electrical Breakdown and Discharges in Gases Part B Macroscopic Processes and Discharges, pp. 119-166, 1983
    [9] 呂登復 實用真空技術 12頁
    [10] E. H. Holt and R. E. Haskell “Plasma Dynamics” Macmiillan, New York, 1965
    [11] J. S. Chang, P. A. Lawless, T. Yamamoto “Corona Discharge Process” IEEE transactions on plasma science, vol. 19, no. 6, pp.1152, 1991
    [12] U. Kogelschatz, B.Eliasson, W. Egli “From ozone generators to flat television screens: history and future potential of dielectric-barrier discharges” Pure Appl. Chem., vol. 71, no. 10, pp. 1819-1828, 1999
    [13] W. Siemens. Poggendorffs Ann. Phys. Chem., v 50, pp. 616, 1840)
    [14] T. Andrews, P. G. Tait. Phil. Trans. Roy. Soc. London 150, 113 (1860).
    [15] M.-P. Otto. Bull. Soc. FrancÀ. Electr. 9, 129 (1929).
    [16] H. Becker. Wiss. Vero» ff. aus dem Siemens-Konzern. 1, 76 (1920); and 3, 243 (1923).
    [17] T. C. Manley. Trans. Electrochem. Soc. 84, 83 (1943).
    [18] Y. Tanaka. J. Opt. Soc. Am. 45, 710 (1955).
    [19] S. Yagi, N. Tabata. Proc. IEEE/OSA Conference on Lasers and Electro-Opt. Paper WE 5, p. 22, Washington, DC (1981).
    [20] Sawada et al, United States Patent 6,424,091
    [21] Riege et al, United States Patent 6,322,759
    [22] Von Engel A, Seeliger R and Steenbeck M 1933 Z. Phys. 85 144
    [23] M. Toyofuku, Y. Ohtsu and H. Fujita “Ozone Generation with High Dielectric Materials Barrier Discharge in a Parallel-Plate System” Proc. XXVI International Conference on Phenomena in Ionized Gases, 2003.
    [24] J. Opad, “Choosing the correct dielectric in corona treating” Converting Magazine, Dec. 1999 v17 i12 88(3)
    [25] J. R. Roth, Industrial Plasma Engineering. Philadelphia, PA: IOP, 1995, vol. 1, pp. 453–463.
    [26] S. Kanazawa, M. Kogoma, T. Moriwaki, and S. Okazaki, “Carbon film formation by cold plasma at atmospheric pressure,” in Proc. 8th Int. Symp. Plasma Chemistry, vol. 3, Tokyo, Japan, 1987, pp. 1839–1844.
    [27] U. Kogelschatz “Filamentary, Patterned, and Diffuse Barrier Discharge” IEEE transactions on plasma science, vol30, no 4, 2002
    [28] R. Bartnikass, “Note on discharges in helium under a.c. conditions” Brit. J. appl. Phys.,ser. 2, vol. 1, pp. 659-661 1968
    [29] K. G. Donohoe, “The Development and Characterization of an Atmospheric pressure Plasma Chemical Reactor,” Ph. D. dissertation, Calif. Inst. Tech., Pasadena CA, 1976
    [30] KG Konohoe and T. Wydeven “Plasma polymerization of ethylene in an atmospheric pressure discharge,” J. Appl. Polymer Sci., vol. 23, pp. 2591–2601, 1979.
    [31] S. Yagi, M. Hishii, N. Tabata, H. Nagai, and A. Nagai, “Silent dischargeCO laser,” Laser Eng., vol. 5, no. 3, pp. 171–176, 1977.
    [32] M. Tanaka, S. Yagi, and N. Tabata, “High frequency silent discharge and its application to cw CO laser application,” in Proc. 8th Ind. Conf Gas Discharges and Their Applications, vol. 1, Oxford, UK, 1985, pp. 551–554.
    [33] K. Yasui, M. Kuzumoto, S. Ogawa, M. Tanaka, and S. Yagi, “Silent-discharge excited TEM 2.5 kW CO laser,” IEEE J. Quantum Electron., vol. 25, pp. 836–840, Apr. 1989.
    [34] H. Nagai, M. Hishii, M. Tanaka, Y. Myoi, H. Wakata, T. Yagi, and N. Tabata, “CW 20-KW SAGE CO laser for industrial use,” IEEE J. Quantum Electron., vol. 29, pp. 2898–2909, Dec. 1993.
    [35] S. Yagi and M. Kuzumoto, “Silent discharges in ozonisers and CO2 lasers,” Aust. J. Phys., vol. 48, pp. 411–418, 1995.
    [36] S. Kanagawa, M. Kogoma, T. Moriwaki, and S. Okazaki “Stable glow plasma at atmospheric pressure,” J. Phys. D, Appl. Phys., vol. 21, pp. 838–840, May 1988.
    [37] T. Yokoyama, M. Kogoma, T. Moriwaki, and S. Okazaki, “The mechanism of the stabilized glow plasma at atmospheric pressure,” J. Phys. D, Appl. Phys., vol. 23, pp. 1125–1128, Aug. 1990.
    [38] S. Okazaki, M. Kogoma, M. Uehara, and Y. Kimura, “Appearance of a stable glow discharge in air, argon, oxygen and nitrogen at atmospheric pressure using a 50 Hz source,” J. Phys. D, Appl. Phys., vol. 26, pp. 889–892, May 1993.
    [39] M. Kogoma and S. Okazaki, “Raising of ozone formation efficiency in a homogeneous glow discharge plasma at atmospheric pressure,” J. Phys. D, Appl. Phys., vol. 27, pp. 1985–1987, Sept. 1994.
    [40] F. Massines, C. Mayoux, R. Messaoudi, A. Rabehi, and P. Ségur, “Experimental study of an atmospheric pressure glow discharge application to polymers surface treatment,” in Proc. 10th Ind. Conf. Gas Dischargesand Their Applications, vol. 2, Swansea, U.K., 1992, pp. 730–733.
    [41] F. Massines, R. B. Gadri, P. Decomps, A. Rabehi, P. Ségur, and C. Mayoux, “Atmospheric pressure dielectric controlled glow discharges: Diagnostics and modeling,” in Proc. 22rd Int. Conf. Phenomena in Ionized Gases, vol. 363, Hoboken, NJ, 1996, pp. 306–315.
    [42] F. Massines, A. Rabehi, P. Decomps, R. B. Gadri, P. Ségur, and C. Mayoux, “Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by a dielectric barrier,” J. Appl. Phys., vol. 83, pp. 2950–2957, Mar. 1998.
    [43] F. Massines and G. Gouda, “A comparison of polypropylen-surface treatment by filamentary, homogeneous and glow discharges in helium at atmospheric pressure,” J. Phys. D, Appl. Phys., vol. 31, pp. 3411–3420, Dec. 1998.
    [44] F. Massines, R. Messaoudi, and C. Mayoux, “Comparison between air filamentary and helium glow dielectric barrier discharges for the polypropylene surface treatment,” Plasmas Polymers, vol. 3, pp. 43–59, Mar. 1998.
    [45] N. Gherardi, G. Gouda, E. Gat, A. Ricard, and F. Massines, “Transition from glow silent discharge to micro-discharges in nitrogen gas,” Plasma Sources Sci. Technol., vol. 9, pp. 340–346, Aug. 2000.
    [46] J. R. Roth, M. Laroussi, and C. Liu, “Experimental generation of a steady-state glow discharge at atmospheric pressure,” in Proc. 27th Int. Conf. Plasma Science, Tampa, FL, 1992.
    [47] T. C. Montie, K. Kelly-Wintenberg, and J. R. Roth, “An overview of research using a one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials,” IEEE Trans. Plasma Sci., vol. 28, pp. 41–50, Feb. 2000.
    [48] P. P. Tsai, L. C. Wadsworth, and J. R. Roth, “Surface modification of fabrics using a one- atmosphere glow discharge plasma to improve wettability,” Textile Res. J., vol. 67, pp. 359–369, 1997.
    [49] Koinuma, H. Ohkudo, T. Hashimoto "Development and application of a microbeam plasma generator" Applied Physics Letters, vol. 60, no.7, pp.816, 1992
    [50] K. Inomata, H. Ha, K. A. Chaudhary, H. Koinuma "Open air deposition of SiO2 film from a cold torch of tetramethoxysilane-H2-Ar system" Applied Physics Letters, vol. 64, no.1, pp.46, 1992
    [51] R. F. Hicks et al. “The Atmospheric-Pressure Plasma Jet: A Review and Comparison to Other Plasma Sources” IEEE transactions on plasma science, vol. 26, no. 6, pp.1685, 1998
    [52] S. E. Babayan, J. Y. Jeong, V. J. Tu, J. Park, G. S. Selwyn and R. F. Hicks “Deposition of silicon dioxide films with an atmospheric-pressure plasma jet” Plasma Sources Sci. Technol. 7 (1998) 286-288.
    [53] J. Y. Jeong, S. E. Babayan, V. J. Tu, J. Park, I. Henins, R. F. Hicks and G. S. Selwyn “Etching Materials with an Atmospheric-Pressure Plasma Jet” Plasma Sources Sci. Technol. 7 (1998) 282-285
    [54] J. Y. Jeong, S. E. Babayan, A. Schutze, V. J. Tu, J. Park, I. Henins, G. S. Selwyn, R. F. Hicks “Etching polyimide with a nonequilibrium atmospheric-pressure plasma jet” J. Vac. Sci. Technol. A 17(5), pp 2581-2585, 1999.
    [55] J. Park, I. Henins, H. W. Herrmann, G. S. Selwyn, J. Y. Jeong, R. F. Hicks, D. Shim and C. S. Chang “An atmospheric pressure plasma source” Applied Physics Letters, v 79, n 3, pp 288-290, 2000.
    [56] J.Y. Jeong, J. Park, I. Henins, S. E. Babayan, V. J. Tu, G. S. Selwyn, G. Ding, and R. F. Hicks “Reaction Chemistry in the Afterglow of an Oxygen-Helium, Atmospheric-Pressure Plasma” J. Phys. Chem. A, 104, pp 8027-8032, 2000.
    [57] V.J. Tu, J. Y. Jeong, A. Schutze, S. E. Babayan, G. Ding, G. S. Selwyn, and R. F. Hicks “Tantalum etching with a nonthermal atmospheric-pressure plasma” J. Vac. Sci. Technol. A 18(6), pp 2799-2805, 2000
    [58] S. E. Babayan, J. Y. Jeong, A. Schutze, V. J. Tu, M. Moravej, G. S. Selwyn and R. F. Hicks “Deposition of silicon dioxide films with a non-equilibrium atmospheric-pressure plasma jet” Plasma Sources Sci. Technol. 10(2001) 573-578
    [59] J. Park, I. Henins, H. W. Herrmann, G. S. Selwyn, R.F. Hicks “Discharge Phenomena of an Atmospheric Pressure Radio-Frequency Capacitive Plasma Source” Journal of Applied Physics, v89, n1, pp 20-28, 2001
    [60] G. R. Nowling, S. E. Babayan, V. Jankovic and R. F. Hicks “Remote plasma-enhanced chemical vapor deposition of silicon nitride at atmospheric pressure” Plasma Sources Sci. Technol. 11(2002) 97-103
    [61] R. F. Hicks et al. United States Patent Application Publication US2002/0129902 A1
    [62] K. H. Schoenbach et al. “Microhollow cathode discharges” Appl. Phys. Lett., Vol. 68, No. 1, 1 January 1996
    [63] K. H. Schoenbach, A. Ei-Habachi, W. Shi and M. Ciocca “High-pressure hollow cathode discharge” Plasma Sources Sci. Technol , v 6, pp. 468-477, 1997
    [64] R. H. Stark and K. H. Schoenbach “Direct current glow discharge in atmospheric air” Applied Physics Letters, v 74, n 25, pp 3770-3772, 1999
    [65] W. Shi, R. H. Stark, and K. H. Schoenbach “Parallel Operation of Microhollow Cathode Discharges” IEEE Transactions on Plasma Science, v 27, n 1, pp. 16-17, 1999
    [66] R. H. Stark and K. H. Schoenbach “Direct current high-pressure glow discharges” Journal of Applied Physcis, v 85, n 4, pp. 2075-2080, 1999
    [67] R. H. Stark and K. H. Schoenbach “Electron heating in atmospheric pressure glow discharge” Journal of Applied Physics, v 89, n 7, pp. 3568-3572, 2001
    [68] A. H. Mohamed, R. Block, and K. H. Schoenbach “Direct Current Glow Discharges in Atmospheric” IEEE Transactions on Plasma Science, v 30, n 1, pp. 182-183, 2002
    [69] A. Ei-Habachi and K. H. Schoenbach “Emission of excimer radiation from direct current, high-pressure hollow cathode discharges” Appl. Phys. Lett. 72(1), pp. 22-24, 1997
    [70] A. Ei-Habachi and K. H. Schoenbach “Generation of intense excimer radiation from high-pressure hollow cathode discharges” Applied Physics Letters, v 73, n 7, pp. 885-887,1998
    [71] A. Ei-Habachi, W. Shi, M. Moselhy, R. H. Stark and K. H. Schoenbach “Series operation of direct current xenon chloride excimer sources” Journal of Applied Physics, v 88, n 6, pp. 3220-3224, 2000
    [72] M. Moselhy, R. H. Stark, K. H. Schoenbach and U. Kogelschatz “Resonant energy transfer from argon dimers to atomic oxygen in microhollow cathode discharges” Applied Physics Letters, v 78, n 7, pp. 880-882, 2001
    [73] M. Moselhy, R. H. Stark, and K. H. Schoenbach “Xenon excimer emission from pulsed microhollow cathode discharges” Applied Physics Letters, v 79, n 9, pp. 1240-1242,2001
    [74] M. Moselhy, W. Shi, R. H. Stark, and K. H. Schoenbach “A Flat Glow Discharge Excimer Radiation Source” IEEE Transactions on Plasma Science, v 30, n 1, pp. 198-199, 2002
    [75] J. G. Eden et al. “Microdischarge devices fabricated in silicon” Appl. Phys. Lett., Vol. 71, No. 9, pp. 1165-1167, 1997
    [76] J. W. Frame, P. C. John, T. A. DeTemple, and J. G. Eden “Continuous-wave emission in the ultraviolet from diatomic excimers in a microdischarge” Applied Physics Letters, v 72, n 21, pp. 2634-2636, 1998
    [77] S. J. Park, C. J. Wagner, C. M. Herring, and J. G. Eden “Flexible microdischarge arrays:Metal polymer devices” Applied Physics Letters, v 77, n 2, pp. 199-202, 2000
    [78] S. J. Park, J. Chen, C. Liu, and J. G. Eden “Silicon microdischarge devices having inverted pyramidal cathodes Fabrication and performance of arrays” Applied Physics Letters, v 78, n4, pp. 419-421, 2001
    [79] C. J. Wagner, S. J. Park, and J. G. Eden “Excitation of a microdischarge with a reverse-biased pnjunction” Applied Physics Letters, v 78, n 6, pp. 709-711, 2001
    [80] B.A. Vojak, S. J. Park, C. J. Wagner, J. G. Eden, R. Koripella, J. Burdon, F. Zenhausern, and D. L. Wilcox “Multistage, monolithic ceramic microdischarge device having an active length of ~0.27mm” Applied Physics Letters, v 78, n 10, pp. 1340-1342, 2001
    [81] J. G. Eden, C. J. Wagner, J. Gao, N. P. Ostrom, and S. J. Park “Microdischarge array-assisted ignition of a high-pressure discharge:Application to arc lamps” Applied Physics Letters, v 79, n 26, pp. 4304-4306, 2001
    [82] C. J. Wagner, N. P. Ostrom, S. J. Park, J. Gao, and J. G. Eden “Reduction in the Breakdown Voltage of a High-Pressure Discharge With an Array of 200-400-μm-Diameter Microdischarges: Application to Arc Lamp Ignition” IEEE Transactions on Plasma Science, v 30, n 1, pp. 194-195,2002
    [83] H. Barankova et al “Fused hollow cathode cold atmospheric plasma” APPLIED PHYSICS LETTERS , v 76, n 3, pp. 285-287, 2000
    [84] L. Bardos,and H. Barankova “Radio frequency hollow cathode source for large area cold atmospheric plasma applications” Surface and Coating Technology, v 133-134, pp. 522-527, 2000
    [85] H. Barankova, and L. Bardos “Hollow cathode plasma sources for large area surface treatment” Surface and Coating Technology, v 146-147, pp.486-490, 2001
    [86] H. Barankova, and L. Bardos “Fused hollow cathode cold atmospheric plasma source for gas treatment” Catalysis Today, v 72 (2002) 237-241
    [87] Yu. Akishev, A. Deryugin, A. Napartovich, N. Trushkin, J. Phys. D: Appl. Phys., v 26, n 10, pp. 1630-1637, 1993
    [88] Y. S. Akishev, M. E. Grushin, I. V. Kochetov, A. P. Napartovich, M. V. Pan’kin, and N. I. Trushkin “Transition of a Multipin Negative Corona in Atmospheric Air to a Glow Discharge” Plasma Physics Reports, v 26, n 2, pp. 172-178, 2000
    [89] S. Kropke, Y. S. Akishev, A. Hollander “Atmospheric pressure DC glow discharge for polymer surface treatment” Surface and Coating Technology, v 142-144, pp. 512-516, 2001
    [90] Y. Akishev, O. Goossens, T. Callebaut, C. Leys, A. Napartovich, and N. Trushkin “The influence of electrode geometry and gas flow on corona-to-glow and glow-to-spark threshold currents in air” J. Phys. D: Appl. Phys., v 34, pp. 2875-2882, 2001
    [91] O. Goossens, T. Callebaut, Yu. Akishev, A. Napartovich, N. Trushkin, and C. Leys “The DC Glow Discharge at Atmospheric Pressure” IEEE Transactions on Plasma Science, v 30, n 1, pp. 176-177, 2002
    [92] E. E. Kunhardt “Generation of Large-Volume, Atmospheric-Pressure, Nonequilibrium Plasmas” IEEE transactions on plasma science, v 28, n 1, pp. 189, 2000
    [93] K. S. Nam, S. R. Lee, J. J. Rha, K. H. Lee, and J. K. Kim “Apparatus for generating low temperature plasma at atmospheric pressure” United States Patent 6,441,554
    [94] S. I. Kim and E. E. Kunhardt “Capillary electrode discharge plasma display panel device and method of fabricating the same” United States Patent 6,255,777
    [95] S. I. Kim and E. E. Kunhardt “Method of fabricating capillary electrode discharge plasma display panel device” United States Patent 6,475,049
    [96] D. Kim, S. Kim, W. Kokonaski “Capillary discharge plasma display panel with optimum capillary aspect ratio” United States Patent 6,545,411
    [97] M. J. Shenton, M. C. Lovell-Hoare and G. C. Stevens "Adhesion enhancement of polymer surfaces by atmospheric plasma treatment" J. Phys. D: Appl. Phys., v 34, pp. 2754–2760, 2001
    [98] M. J. Shenton, G. C. Stevens, N. P. Wright, X. Duan “Chemical-Surface Modification of Polymers Using Atmospheric Pressure Nonequilibrium Plasmas and Comparison with Vacuum Plasmas” Journal of Polymer Science Part A: Polymer Chemistry, v 40, pp. 95-109 (2002)
    [99] M. J. Shenton and G. C. Stevens “Surface modification of polymer surfaces: atmospheric plasma versus vacuum plasma treatment” J. Phys. D: Appl. Phys., v 34, pp. 2761-2768, 2002
    [100] M. J. Shenton and G. C. Stevens “Optical Emission From Atmospheric Pressure Nonequilibrium Plasma” IEEE Transactions on Plasma Science, v 30, n 1, pp. 184-185, 2002
    [101] M. Laroussi et al “The Resistive Barrier Discharge” IEEE TRANSACTIONS ON PLASMA SCIENCE, v 30, n 1, pp. 158-159, 2002
    [102] M. Strobel et al Plasma surface modification of polymers: relevance to adhesion
    [103] 高正雄 “電漿化學” 復漢出版社印行
    [104] Katz and Milewski, Handbook of Reinforcement for Plastics, 1987.
    [105] Accuratus Corporation網站http://www.accuratus.com/mullite.html
    [106] 日盛玻璃行型錄
    [107] DAI NIPPON INK AND CHEMICALS網站文件http://www.dic.co.jp/rd/tech/rev0302/fig03.html
    [108] Resolution Performance Products Corporation網站文件http://www.resins.com/resins/am/pdf/SC2733.pdf
    [109] Dow Corning網站文件
    http://www.dowcorning.com/applications/product_finder/pf_details.asp?l1=003&pg=00000990&prod=M0001510&type=MRKT
    [110] E. S. Lee, H. I. Park, H. K. Baik, S. J. Lee, K. M. Song, M. K. Hwang, C. S. Huh ”Air mesh plasma for PCB de-smear process” Surface and Coating technology, v 17, pp. 328-332, 2003
    [111] S. Masuda, K. Akutsu, M. Kuroda, Y. Awatsu, and Y. Shibuya “A Ceramic-Based Ozonizer Using High-Frequency Discharge” IEEE Transactions on Industry Applications, v 24, n 2, pp. 223-231

    下載圖示 校內:2008-09-03公開
    校外:2008-09-03公開
    QR CODE