簡易檢索 / 詳目顯示

研究生: 游崇銘
Yo, Chung-Ming
論文名稱: 利用改造外套膜的反轉錄病毒對癌症做基因治療
Gene therapy for cancer via envelope-modified retrovirus
指導教授: 吳昭良
Wu, Chao-Liang
學位類別: 碩士
Master
系所名稱: 醫學院 - 口腔醫學研究所
Institute of Oral Medicine
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 46
中文關鍵詞: 基因治療反轉錄病毒外套膜
外文關鍵詞: gene therapy, retrovirus, envelope
相關次數: 點閱:176下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在基因治療的載體中,以反轉錄病毒最能使外送至細胞內的基因持續而穩定的表現。不過反轉錄病毒感染細胞的能力是取決於其外套膜的特性,所以若能在反轉錄病毒的外套膜上進行修改,使其可以具有專一性地感染特定的細胞,便可用來作為一個腫瘤細胞基因治療的載體。而在反轉錄病毒的外套膜上,先前的研究指出在其上有一proline-rich region (PRR)可以接受一小段胜肽的嵌入,而不會影響病毒顆粒的穩定性,所以修飾外套膜上的PRR來增加病毒和其他的細胞表面受體的結合,進而促使病毒感染其他種類的細胞。在內皮細胞和癌細胞會表現NRP-1(為一個新的VEGF的受體),而DG-1和DG-2可以專一性地和neuropilin-1 (NRP-1)結合。VEGFR-1在腫瘤的血管新生時扮演著一個重要的角色,而F56可以專一地和VEGFR-1結合並且在動物腫瘤模式中可以有效的抑制腫瘤生長。我們便是分別把DG-1、DG-2、F56這三個胜肽接到病毒的外套膜上。但是研究結果顯示出,在這些改造外套膜的反轉錄病毒似乎不能透過這些受體來感染非老鼠的細胞株或是人類的癌細胞,所以改造反轉錄病毒的外套膜似乎不能改變病毒本身的趨向性。儘管如此,這些在反轉錄病毒的改造外套膜上的胜肽,可以有效地抑制細胞的移動並且可以引響其原來受體的訊息傳導。另外在利用replication- defective的病毒作為基因治療的載體中,有一個很大的限制在於其無法有效率的在活體內傳送治療基因,所以我們構築了一個replication-competent retrovirus (RCR)作為基因的載體,並且也改造其外套膜,我們也證明這些載體可以有效率地在細胞中複製。最後我們在老鼠腫瘤模式中發現這些改造外套膜的RCR載體是可以有效的抑制腫瘤大小。由結果顯示,利用改造外套膜的RCR載體對於腫瘤的治療是有所助益的。

    Efficient targeted retroviral gene delivery remains an important goal in gene therapy. The host range of retroviruses is determined primarily by the interaction between the retroviral envelope glycoproteins and specific proteins of the host cell surface that act as retroviral receptors. The variable proline-rich region (PRR) in the retroviral envelope glycoprotein (gp70) has been reported to tolerate a small insertion of peptides, which does not affect the stability of viral particles. The modification of the PRR might redirect binding of the retroviral envelope protein to a new cell surface receptor. We modified the variable PRR of the ecotropic MMLV (Moloney murine leukemia virus) by constructing these peptides (DG-1, DG-2, or F56) to the variable PRR. Peptide DG-1 and DG-2 are composed of 9 amino acids and can specifically bind to neuropilin-1 (NRP-1), a new VEGF receptor, which is expressed by endothelial cells and tumor cells. VEGFR-1/Flt-1 plays important roles during the neovascularization under pathological conditions including tumor. Peptide F56 can specifically bind to VEGF receptor Flt-1 and almost abolished VEGF binding to receptor Flt-1 in vitro. Retroviral vector particles containing such chimeric envelope proteins achieved a wild-type titer on NIH3T3 cells, but the modified retroviruses could not change the tropism to infect non-murine cell lines, such as human lung cancer cells. Therefore, modifications of the envelope on the retroviral vectors might have not redirected the tropism of the retrovirus. Nevertheless, we investigated the functions of these peptides on the modified retroviruses. We found that the DG-1-, DG-2-, or F56-modified retroviruses could inhibit the cell migration and affect the signal transduction of their targeted cells. The modified retroviruses might confer specific binding to the cells and interfere with the functions of targeted receptors. A major obstacle in cancer gene therapy is the limited efficiency of in vivo gene transfer by replication-defective retrovirus vectors in current use. We had also developed replication-competent retroviral (RCR) vectors, derived from the ecotropic MMLV, with DG-1-, DG-2-, or F56-modified envelope. These RCR vectors could stably retain over multiple replication cycles in culture. Finally, these RCR vectors had the antitumor effects in animal tumor models. These result suggested that RCRs with modified envelopes had therapeutic potential for tumors.

    Chinese abstract………………………………………………….Ⅰ Abstract…………………………………………………………..Ⅲ Acknowledgement……………………………….……………….Ⅴ Content……………………………………….…………..…........Ⅵ Figure content………………………………………………..…..Ⅸ Abbreviation…………………………………………………......Ⅹ Introduction A. Retroviral vector for gene therapy………………………………………...1 B. The entry of retroviral vectors…………………………………………….2 C. Modified retrovirus………………………………………………………..3 D. Replication-competent retrovirus (RCR)……………………………….....4 E. Peptides for retrovirus modifications………………………………...……5 E.1. DG-1 and DG-2………………………………………………...…….5 E.2. F56………………………………………………………………...….6 F. Aims of this study…………………………………………………………7 Materials and Methods Materials A. Plasmids…………………………………………………………….......…8 B. Oligonucleotides……………………………………………………….…..9 C. Cell lines……………………………………………………………….…10 D. Aminals……………………………………………………………….….11 Methods A. Cell lines and cell culture……………………………………………….11 B. Transfection……………………………………………………………..11 C. Retroviral vector production…………………………………………....12 D. Determination of viral titer…………………………………………...…13 E. RNA isolation and reverse transcription polymerase chain reaction (RT-PCR)…………...………………………………………………….13 F. MTT assay…………………………………………………………...….14 G. Boyden chamber assay………………………………………………….15 H. Western blot……………………………………………………….…….15 I. The replication and expression of RCR vectors in culture……….……..16 J. Multiple-cycle transductions with replication-competent retroviral vectors……...…………………………………………………………..16 K. LL/2 tumor model………………………………………………………17 L. Statistical analysis………………………………………………………17 Results A. Construction of the chimeric envelopes………………………………..18 B. Determination of viral titer………………………………….…….……18 C. Detection of the neuropilin-1 expression in tumor cell lines by RT-PCR……………………………………………………………...….19 D. The infectivity of modified retroviruses………………………………..19 E. Boyden chamber assay for the peptide-modified retroviruses………....19 F. Effect of modified retroviruses on Akt phosphorylation in CL1-5 cells……………………………………………………………………..20 G. Construction of replication-competent retroviral vectors………………21 H. In vitro replication of the RCR vectors…………………………………22 I. The RCR vectors replicated efficiently over multiple replication cycles in culture………………………………………………………………..22 J. Antitumor effects of RCR vectors in the subcutaneous LL/2 animal model……………………………………………………………….…..23 Discussion…………………………………………………………….…...24 References……………………………………………………………...….28 Figure content Fig. 1. Genomes of ecotropic MMLV……………………………………….34 Fig. 2. Schematic diagrams of chimeric retroviral envelope proteins……….35 Fig. 3. The production of retroviruses (pCL vector system)………………...36 Fig. 4. Determination of retroviral titers…………………………………….37 Fig. 5. Detection of NRP1 mRNA expressions by RT-PCR………………...38 Fig. 6. DG-1/lacZ or DG-2/lacZ virus could not infect human cell lines and had no cytotoxicity on their targeting cells…………..……….....39 Fig. 7. Cell migration in Boyden chamber assay…………………………....40 Fig. 8. Effects of modified retroviruses on Akt phosphorylation in CL1-5 cells…………………………………………………………………..41 Fig. 9. Construction of the replication-competent vector…………………...42 Fig. 10. Replication and expression of the RCR vectors in NIH3T3 cells….43 Fig. 11. The RCR vectors replicated efficiently over multiple replication cycles in culture………...………………………………………..44 Fig. 12. In vivo antitumor effects of RCRs in LL/2 tumor-bearing mice…...45

    An, P., Lei, H., Zhang, J., Song, S., He, L., Jin, G., Liu, X., Wu, J., Meng, L., Liu, M., and Shou, C. (2004). Suppression of tumor growth and metastasis by a VEGFR-1 antagonizing peptide identified from a phage display library. Int J Cancer 111, 165-173.

    Battini, J. L., Heard, J. M., and Danos, O. (1992). Receptor choice determinants in the envelope glycoproteins of amphotropic, xenotropic, and polytropic murine leukemia viruses. J Virol 66, 1468-1475.

    Battini, J. L., Rodrigues, P., Muller, R., Danos, O., and Heard, J. M. (1996). Receptor-binding properties of a purified fragment of the 4070A amphotropic murine leukemia virus envelope glycoprotein. J Virol 70, 4387-4393.

    Bellamy, W. T., Richter, L., Frutiger, Y., and Grogan, T. M. (1999). Expression of vascular endothelial growth factor and its receptors in hematopoietic malignancies. Cancer Res 59, 728-733.

    Benedict, C. A., Tun, R. Y., Rubinstein, D. B., Guillaume, T., Cannon, P. M., and Anderson, W. F. (1999). Targeting retroviral vectors to CD34-expressing cells: binding to CD34 does not catalyze virus-cell fusion. Hum Gene Ther 10, 545-557.

    Dales, J. P., Garcia, S., Bonnier, P., Duffaud, F., Carpentier, S., Djemli, A., Ramuz, O., Andrac, L., Lavaut, M., Allasia, C., and Charpin, C. (2003). [Prognostic significance of VEGF receptors, VEGFR-1 (Flt-1) and VEGFR-2 (KDR/Flk-1) in breast carcinoma]. Ann Pathol 23, 297-305.

    Diaz, R. M., Eisen, T., Hart, I. R., and Vile, R. G. (1998). Exchange of viral promoter/enhancer elements with heterologous regulatory sequences generates targeted hybrid long terminal repeat vectors for gene therapy of melanoma. J Virol 72, 789-795.

    Donahue, R. E., Kessler, S. W., Bodine, D., McDonagh, K., Dunbar, C., Goodman, S., Agricola, B., Byrne, E., Raffeld, M., Moen, R., and et al. (1992). Helper virus induced T cell lymphoma in nonhuman primates after retroviral mediated gene transfer. J Exp Med 176, 1125-1135.

    Fass, D., Davey, R. A., Hamson, C. A., Kim, P. S., Cunningham, J. M., and Berger, J. M. (1997). Structure of a murine leukemia virus receptor-binding glycoprotein at 2.0 angstrom resolution. Science 277, 1662-1666.

    Ferrara, N., Gerber, H. P., and LeCouter, J. (2003). The biology of VEGF and its receptors. Nat Med 9, 669-676.

    Finger, C., Sun, Y., Sanz, L., Alvarez-Vallina, L., Buchholz, C. J., and Cichutek, K. (2005). Replicating retroviral vectors mediating continuous production and secretion of therapeutic gene products from cancer cells. Cancer Gene Ther 12, 464-474.

    Fong, G. H., Klingensmith, J., Wood, C. R., Rossant, J., and Breitman, M. L. (1996). Regulation of flt-1 expression during mouse embryogenesis suggests a role in the establishment of vascular endothelium. Dev Dyn 207, 1-10.

    Fuh, G., Garcia, K. C., and de Vos, A. M. (2000). The interaction of neuropilin-1 with vascular endothelial growth factor and its receptor flt-1. J Biol Chem 275, 26690-26695.

    Gray, K. D., and Roth, M. J. (1993). Mutational analysis of the envelope gene of Moloney murine leukemia virus. J Virol 67, 3489-3496.

    Ishida, A., Murray, J., Saito, Y., Kanthou, C., Benzakour, O., Shibuya, M., and Wijelath, E. S. (2001). Expression of vascular endothelial growth factor receptors in smooth muscle cells. J Cell Physiol 188, 359-368.

    Jager, U., Zhao, Y., and Porter, C. D. (1999). Endothelial cell-specific transcriptional targeting from a hybrid long terminal repeat retrovirus vector containing human prepro-endothelin-1 promoter sequences. J Virol 73, 9702-9709.

    Kawasaki, T., Kitsukawa, T., Bekku, Y., Matsuda, Y., Sanbo, M., Yagi, T., and Fujisawa, H. (1999). A requirement for neuropilin-1 in embryonic vessel formation. Development 126, 4895-4902.

    Kayman, S. C., Park, H., Saxon, M., and Pinter, A. (1999). The hypervariable domain of the murine leukemia virus surface protein tolerates large insertions and deletions, enabling development of a retroviral particle display system. J Virol 73, 1802-1808.

    Kim, J. W., Closs, E. I., Albritton, L. M., and Cunningham, J. M. (1991). Transport of cationic amino acids by the mouse ecotropic retrovirus receptor. Nature 352, 725-728.

    Kwon, Y. J., Hung, G., Anderson, W. F., Peng, C. A., and Yu, H. (2003). Determination of infectious retrovirus concentration from colony-forming assay with quantitative analysis. J Virol 77, 5712-5720.

    Lacal, P. M., Failla, C. M., Pagani, E., Odorisio, T., Schietroma, C., Falcinelli, S., Zambruno, G., and D'Atri, S. (2000). Human melanoma cells secrete and respond to placenta growth factor and vascular endothelial growth factor. J Invest Dermatol 115, 1000-1007.

    Larrivee, B., and Karsan, A. (2000). Signaling pathways induced by vascular endothelial growth factor (review). Int J Mol Med 5, 447-456.

    Lavillette, D., Maurice, M., Roche, C., Russell, S. J., Sitbon, M., and Cosset, F. L. (1998). A proline-rich motif downstream of the receptor binding domain modulates conformation and fusogenicity of murine retroviral envelopes. J Virol 72, 9955-9965.

    Logg, C. R., Logg, A., Matusik, R. J., Bochner, B. H., and Kasahara, N. (2002). Tissue-specific transcriptional targeting of a replication-competent retroviral vector. J Virol 76, 12783-12791.

    Logg, C. R., Tai, C. K., Logg, A., Anderson, W. F., and Kasahara, N. (2001). A uniquely stable replication-competent retrovirus vector achieves efficient gene delivery in vitro and in solid tumors. Hum Gene Ther 12, 921-932.
    Marshall, E. (2002). Clinical research. Gene therapy a suspect in leukemia-like disease. Science 298, 34-35.

    Morgan, R. A., Nussbaum, O., Muenchau, D. D., Shu, L., Couture, L., and Anderson, W. F. (1993). Analysis of the functional and host range-determining regions of the murine ectropic and amphotropic retrovirus envelope proteins. J Virol 67, 4712-4721.

    Mountain, A. (2000). Gene therapy: the first decade. Trends Biotechnol 18, 119-128.

    Murga, M., Fernandez-Capetillo, O., and Tosato, G. (2005). Neuropilin-1 regulates attachment in human endothelial cells independently of vascular endothelial growth factor receptor-2. Blood 105, 1992-1999.

    Naviaux, R. K., Costanzi, E., Haas, M., and Verma, I. M. (1996). The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses. J Virol 70, 5701-5705.

    Ng, V. L., Wood, T. G., and Arlinghaus, R. B. (1982). Processing of the env gene products of Moloney murine leukaemia virus. J Gen Virol 59, 329-343.

    Ott, D., Friedrich, R., and Rein, A. (1990). Sequence analysis of amphotropic and 10A1 murine leukemia viruses: close relationship to mink cell focus-inducing viruses. J Virol 64, 757-766.

    Price, D. J., Miralem, T., Jiang, S., Steinberg, R., and Avraham, H. (2001). Role of vascular endothelial growth factor in the stimulation of cellular invasion and signaling of breast cancer cells. Cell Growth Differ 12, 129-135.

    Ram, Z., Culver, K. W., Oshiro, E. M., Viola, J. J., DeVroom, H. L., Otto, E., Long, Z., Chiang, Y., McGarrity, G. J., Muul, L. M., et al. (1997). Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells. Nat Med 3, 1354-1361.

    Sandrin, V., Russell, S. J., and Cosset, F. L. (2003). Targeting retroviral and lentiviral vectors. Curr Top Microbiol Immunol 281, 137-178.

    Sawano, A., Iwai, S., Sakurai, Y., Ito, M., Shitara, K., Nakahata, T., and Shibuya, M. (2001). Flt-1, vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of monocyte-macrophages in humans. Blood 97, 785-791.

    Schneider, R. M., Medvedovska, Y., Hartl, I., Voelker, B., Chadwick, M. P., Russell, S. J., Cichutek, K., and Buchholz, C. J. (2003). Directed evolution of retroviruses activatable by tumour-associated matrix metalloproteases. Gene Ther 10, 1370-1380.

    Soker, S., Takashima, S., Miao, H. Q., Neufeld, G., and Klagsbrun, M. (1998). Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92, 735-745.

    Tai, C. K., Logg, C. R., Park, J. M., Anderson, W. F., Press, M. F., and Kasahara, N. (2003). Antibody-mediated targeting of replication-competent retroviral vectors. Hum Gene Ther 14, 789-802.

    Vile, R. G., Russell, S. J., and Lemoine, N. R. (2000). Cancer gene therapy: hard lessons and new courses. Gene Ther 7, 2-8.

    Wang, W. J., Tai, C. K., Kasahara, N., and Chen, T. C. (2003). Highly efficient and tumor-restricted gene transfer to malignant gliomas by replication-competent retroviral vectors. Hum Gene Ther 14, 117-127.

    Weimin Wu, B., Cannon, P. M., Gordon, E. M., Hall, F. L., and Anderson, W. F. (1998). Characterization of the proline-rich region of murine leukemia virus envelope protein. J Virol 72, 5383-5391.

    Whitaker, G. B., Limberg, B. J., and Rosenbaum, J. S. (2001). Vascular endothelial growth factor receptor-2 and neuropilin-1 form a receptor complex that is responsible for the differential signaling potency of VEGF(165) and VEGF(121). J Biol Chem 276, 25520-25531.

    White, J. M. (1992). Membrane fusion. Science 258, 917-924.
    Wu, B. W., Lu, J., Gallaher, T. K., Anderson, W. F., and Cannon, P. M. (2000). Identification of regions in the Moloney murine leukemia virus SU protein that tolerate the insertion of an integrin-binding peptide. Virology 269, 7-17.

    Wu, Y., Hooper, A. T., Zhong, Z., Witte, L., Bohlen, P., Rafii, S., and Hicklin, D. J. (2006). The vascular endothelial growth factor receptor (VEGFR-1) supports growth and survival of human breast carcinoma. Int J Cancer.

    Zufferey, R., Nagy, D., Mandel, R. J., Naldini, L., and Trono, D. (1997). Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15, 871-875.

    下載圖示 校內:2010-09-11公開
    校外:2010-09-11公開
    QR CODE