簡易檢索 / 詳目顯示

研究生: 張瑞航
Chang, Jui-Hang
論文名稱: 量子布朗運動的精確主方程式
An Exact Master Equation for a Quantum Brownian Particle
指導教授: 楊緒濃
Nyeo, Su-Long
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 75
中文關鍵詞: 開放式量子系統影響泛函非馬可夫過程
外文關鍵詞: open quantum system, influence functional, non-Markovian processes
相關次數: 點閱:87下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們利用 Feynman 和 Vernon 發展出的影響泛函方法來研究系統加上熱庫的模型_ 即在任意溫度下,一個在諧振位勢中的粒子與一般環境 (歐姆, 次歐姆與超歐姆) 線性耦合的模型。我們推導出系統約化密度矩陣的精確主方程式,並對主方程式中與時間相關的係數 (耗散係數,擴散係數,…) 做了弱耦合近似。我們也對這些與時間相關的係數,在各種不同的環境中進行數值分析。值得注意的是,系統約化密度矩陣的快速對角化發生在極低的環境溫度中,而且發生的時間尺度也比在期刊論文 Phys. Rev. D 45, 2843 (1992) 中所分析的較強耦合條件下的尺度來的長。

    We apply the Feynman-Vernon influence functional method to study the system-plus-reservoir model-
    a Brownian particle in a harmonic potential linearly coupled to a general environment (ohmic, sub-ohmic, or supraohmic) at arbitrary temperature. We derive an exact master equation for the reduced density matrix of the system and then make a weak-coupling approximation for the time-dependent coefficients (dissipation constant, diffusive coefficient, ...) in the master equation. We also analyze numerically these time-dependent coefficients for different environments. Noteworthily, the fast diag-
    onalization of the reduced density matrix takes place at a very low temperatrue and in a time scale larger than the one in the case of stronger coupling analyzed in Hu's paper, Phys. Rev. D 45, 2843 (1992).

    Contents 1 Quantum Brownian Motion: An Introduction 1 1.1 Classical Motion of a Brownian Particle . . . . . . . . . . . . . . 1 1.2 Approaches to Open Quantum Systems . . . . . . . . . . . . . . . . 3 1.2.1 Quantum Langevin Equation for a Brownian Particle . . . . . . 4 1.2.2 The Ohmic, Subohmic, and Supraohmic Environment . . . . . . . 9 1.2.3 Commutation Relations for the Noise Operator and its Statis- tics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2.4 From Quantum Langevin Equation to Master Equation . . . . . 14 2 Review of Feynman's Space-Time Formulation of Nonrelativistic Quantum Mechanics 21 2.1 The Single Path Integrals . . . . . . . . . . . . . . . . . . . . 21 2.1.1 The Action and the Action of Classical Path . . . . . . . . 21 2.1.2 The Quantum-Mechanical Amplitude K(xb;xa) and Single Path Integrals . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.1.3 Gaussian Integrals . . . . . . . . . . . . . . . . . . . . . 23 2.2 The System with Many Variables and Double Path Integrals . . . . . 24 2.2.1 The Feynman's Space-Time Formulation with Influence Functional Method [7] . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.2 The General Properties of the Influence Functional . . . . . 26 2.2.3 Quantum Statistical Mechanics . . . . . . . . . . . . . . . 27 2.2.4 The Operator Form of Influence Functional . . . . . . . . . 28 2.2.5 Non-Markovian Behavior of the Reduced Evolution Operator . . 29 3 Non-Markovian Dynamics of Quantum Brownian Motion in a General Environ- ment 31 3.1 The System and Environment . . . . . . . . . . . . . . . . . . . . 31 3.1.1 The Complex Kernel L(s) and the Interpretation of the Noise and Dissipation Kernels . . . . . . . . . . . . . . . . . . 34 3.1.2 Decoherence Versus Dissipation: Ohmic Environment at High Temperatures . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2 The Master Equation in a General Environment . . . . . . . . . . . 37 3.3 Analysis of the Time-Dependent Coefficients for the Weak-Coupling Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.3.1 The Weak-Coupling Limit . . . . . . . . . . . . . . . . . . 47 3.3.2 The Frequency Shift . . . . . . . . . . . . . . . . . . . . 47 3.3.3 The Dissipative Constant . . . . . . . . . . . . . . . . . . 50 3.3.4 The Diffusive Coefficient and Decoherence . . . . . . . . . 52 4 Discussions and Conclusions 56 A Evaluations of the Quantum Mechanical Average for the Noise Operator 57 B Evaluation of the Influence Functional F[x;x'] 59 B.1 The Density Matrix for the nth Oscillator . . . . . . . . . . . . 59 B.2 The Kernel K(n)x . . . . . . . . . . . . . . . . . . . . . . . . . 62 B.3 The Influence Functional F(n)[x;x'] . . . . . . . . . . . . . . . 64 C The Derivation of the Master Equation 66 C.1 The Expansions of Jr(t+dt;0) under the Straight-Path Approximation 66 C.2 The Equations of Motion for classical paths . . . . . . . . . . . 69 C.3 The Fresnel Integrals . . . . . . . . . . . . . . . . . . . . . . 71 C.4 Some Useful Relations . . . . . . . . . . . . . . . . . . . . . . 72

    [1] L. E. Reichl, A Modern Course in Statistical Physics, 2nd ed (John Wiley &
    Sons, Inc., New York, 1998).
    [2] C. W. Gardiner and P. Zoller, Quantum Noise, 3rd ed (Springer-Verlag,
    Berlin, 2004).
    [3] U. Weiss, Quantum Dissipative System, 2nd ed (World Scientific, Singapore,
    1999)
    [4] A. J. Leggett et al., Rev. Mod. Phys. 59, 1 (1987).
    [5] A. O. Caldeira and A. J. Leggett, Ann. Phys. (N.Y.) 149, 374 (1983).
    [6] I. S. Gradshteyn and I. M. Rhyzhik, Tables of Integrals, Series, and
    Products (Academic Press, New York, 1996, 3.987 ETI88(3) and 3.893 BI
    ((261))(3).)
    [7] R. P. Feynman and F. L. Vernon, Ann. Phys. (N.Y.) 24, 118 (1963).
    [8] B. L. Hu, Juan Pablo Paz, and Yuhong Zhang, Phys. Rev. D 45, 2843 (1992).
    [9] A. O. Caldeira and A. J. Leggett, Physica A 121, 587 (1983).
    [10] A. Stern, Y. Aharonov, and Y. Imry, Phys. Rev. A 41, 3436 (1990).

    下載圖示 校內:2007-06-22公開
    校外:2007-06-22公開
    QR CODE