| 研究生: |
張瑞航 Chang, Jui-Hang |
|---|---|
| 論文名稱: |
量子布朗運動的精確主方程式 An Exact Master Equation for a Quantum Brownian Particle |
| 指導教授: |
楊緒濃
Nyeo, Su-Long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 開放式量子系統 、影響泛函 、非馬可夫過程 |
| 外文關鍵詞: | open quantum system, influence functional, non-Markovian processes |
| 相關次數: | 點閱:87 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們利用 Feynman 和 Vernon 發展出的影響泛函方法來研究系統加上熱庫的模型_ 即在任意溫度下,一個在諧振位勢中的粒子與一般環境 (歐姆, 次歐姆與超歐姆) 線性耦合的模型。我們推導出系統約化密度矩陣的精確主方程式,並對主方程式中與時間相關的係數 (耗散係數,擴散係數,…) 做了弱耦合近似。我們也對這些與時間相關的係數,在各種不同的環境中進行數值分析。值得注意的是,系統約化密度矩陣的快速對角化發生在極低的環境溫度中,而且發生的時間尺度也比在期刊論文 Phys. Rev. D 45, 2843 (1992) 中所分析的較強耦合條件下的尺度來的長。
We apply the Feynman-Vernon influence functional method to study the system-plus-reservoir model-
a Brownian particle in a harmonic potential linearly coupled to a general environment (ohmic, sub-ohmic, or supraohmic) at arbitrary temperature. We derive an exact master equation for the reduced density matrix of the system and then make a weak-coupling approximation for the time-dependent coefficients (dissipation constant, diffusive coefficient, ...) in the master equation. We also analyze numerically these time-dependent coefficients for different environments. Noteworthily, the fast diag-
onalization of the reduced density matrix takes place at a very low temperatrue and in a time scale larger than the one in the case of stronger coupling analyzed in Hu's paper, Phys. Rev. D 45, 2843 (1992).
[1] L. E. Reichl, A Modern Course in Statistical Physics, 2nd ed (John Wiley &
Sons, Inc., New York, 1998).
[2] C. W. Gardiner and P. Zoller, Quantum Noise, 3rd ed (Springer-Verlag,
Berlin, 2004).
[3] U. Weiss, Quantum Dissipative System, 2nd ed (World Scientific, Singapore,
1999)
[4] A. J. Leggett et al., Rev. Mod. Phys. 59, 1 (1987).
[5] A. O. Caldeira and A. J. Leggett, Ann. Phys. (N.Y.) 149, 374 (1983).
[6] I. S. Gradshteyn and I. M. Rhyzhik, Tables of Integrals, Series, and
Products (Academic Press, New York, 1996, 3.987 ETI88(3) and 3.893 BI
((261))(3).)
[7] R. P. Feynman and F. L. Vernon, Ann. Phys. (N.Y.) 24, 118 (1963).
[8] B. L. Hu, Juan Pablo Paz, and Yuhong Zhang, Phys. Rev. D 45, 2843 (1992).
[9] A. O. Caldeira and A. J. Leggett, Physica A 121, 587 (1983).
[10] A. Stern, Y. Aharonov, and Y. Imry, Phys. Rev. A 41, 3436 (1990).