| 研究生: |
陳園尹 Chen, Yun-Ying |
|---|---|
| 論文名稱: |
多元新穎金屬硫鹵族化合物之合成與物理性質 Syntheses and Physical Properties of New Multinary Metal Chalcohalides |
| 指導教授: |
許桂芳
Hsu, Kuei-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 硫鹵族化合物 、熱電材料 |
| 外文關鍵詞: | metal chalcohalides, thermoelectric materials |
| 相關次數: | 點閱:84 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以高溫長晶法,合成出六個具相同結構的新穎硫鹵族化合物Bi-Cu-X-Q (X=Cl, Br; Q=S, Se)。以化合物 1為例,晶系 (crystal system) 為 Monoclinic C2/m,晶格常數 (cell constants) 為a = 13.09 Å、b = 4.065 Å、c = 9.23 Å、β = 91.21 °及V = 491.6 Å3。結構中共有8個原子位置,可切成三個區塊A、B及C。區塊A為CuS4四面體,其中Cu產生錯排 (disorder) 現象分裂成三個位置,每個位置均未填滿。區塊B為BiS6八面體結構,其中一個S與Cl產生混填現象。區塊C為BiS5金字塔型結構。此三區塊以共用S的形式朝b軸方向無限延伸形成一個新穎的三維結構。在化合物 1a、1b、2a及2b中,S部分被Se取代。在化合物 2、2a及2b中,Cl完全被Br取代。此類化合物,隨著Se取代增加,能隙明顯下降,分佈在0.7~0.8eV,屬於一個窄能隙的半導體材料。熔點約在500℃,且具有共熔 (congruent melting) 現象,可利用垂直長晶法 (bridgman method) 來長晶。未來將測量S (Seebeck coefficient),朝熱電性質的方向做研究。
A series of new metal chalcohalides Bi-Cu-X-Q (X=Cl, Br; Q=S, Se) were synthesized at 700℃. Compounds 1, 1a, 1b, 2, 2a and 2b are isostructural and crystallize in the same space group C2/m. The framwork can be divided into three domains of A, B and C. The domain A consists of CuQ4 tetrahedra and three disorderd Cu atoms with occupancies 7.8%, 9.1% and 40%. The domain B consists of BiQ6-xXx octahedra with x = 0.6. The domain C consists of BiQ5 square pyramidal structure. The six compounds have band gaps ranging from 0.7 eV to 0.8 eV. Differential thermal analyses reveal the six compounds feature congruent melting behaviors. The melting and recrystallization points of all the compounds occur at the similiar temperatures of 500℃ and 480℃ respectively. Polycrystalline ingot of 1 was grown by Bridgman method. The measurement of seebeck coefficient, electrical conductivity and thermal conductivity are undertaken.
[1] Heremans, J. P.; Jovovic, V.; Toberer, E. S.; Saramat, A.; Kurosaki, K.; Charoenphakdee, A.; Yamanaka, S.; Snyder, G. J. Science. 2008, 321, 554.
[2] Biswas, K.; He, J.; Zhang, Q.; Wang, G.; Uher, C.; Dravid, V.
P.; Kanatzidis, M. G. Nat. Chem. 2011, 3, 160.
[3] Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y.; Minnich, A.; Yu, B.; Yan, X.; Wang, D.; Muto, A.; Vashaee, D.; Chen, X.; Liu, J.; Dresselhaus, M. S.; Chen, G.; Ren, Z. Science. 2008, 320, 634.
[4] Biswas, K.; He, J.; Blum, I. D.; Wu, C. I.; Hogan, T. P.; Seidman, D. N.; Dravid, V. P.; Kanatzidis, M. G. Nature. 2012, 489, 414.
[5] Chung, D. Y.; Hogan, T.; Brazis, P. Science. 2000, 287, 1024.
[6] Chung, D. Y.; Choi, K. S.; Iordanidis, L.; Schindler, J. L.; Brazis, P. W.; Kannewurf, C. R.; Chen, B.; Hu, S.; Uher, C.; Kanatzidis, M. G. Chem Mater. 1997, 9, 3060.
[7] Tritt, T. M. Science. 1999, 283, 804.
[8] Cui, Y.; Assoud, A.; Kleinke. H. Inorg. Chem. 2009, 48, 5313.
[9] Snyder, G. J.; Toberer, E. S. Nat Mater. 2008, 7, 105.
[10] Finlayson, N.; Banyai, W. C.; Seaton. C. T. J. Opt. Soc. Am. 1989, 6B, 675.
[11] Kim, Y.; Seo, I. S.; Martin, S. W.; Baek, J.; Halasyamani, P. S.; Arumugam, N.; Steinfink, H. Chem. Mater. 2008, 20, 6048.
[12] Adam, A.; Mater. Res. Bull. 2007, 42, 1986.
[13] Tritt, T. M. Science. 1999, 283, 804.
[14] Chung. D. Y.; Choi, K. S.; Iordanidis, L.; Schindler, J. L.; Brazis, P. W.; Kannewurf, C. R.; Chen, B.; Hu, S.; Uher, C.; Kanatzidis, M. G. Chem. Mater. 1997, 9, 3060.
[15] Mrotzek, A.; Chung, D.-Y.; Hogan, T.; Kanatzidis, M. G. J. Mater. Chem. 2000, 10, 1667.
[16] Androulakis, J.; Hsu, K. F.; Kong, H.; Uher, C.; D’Angelo, J. J.; Downey, A.; Hogan, T.; Kanatzidis, M. G. Adv. Mater. 2006, 18, 1170.
[17] Derakhshan, S.; Assoud, A.; Taylor, N. J.; Kleinke, H. Intermetallics. 2006, 14, 198.
[18] Chung, D. Y.; Hogan, T. P.; Rocci-Lane M.; Brazis, P.; Ireland, J. R.; Kannewurf, C. R.; Bastea, M.; Uher, C.; Kanatzidis, M. G. J. Am. Chem. Soc. 2004, 126, 6414.
[19] Rowe, D. M. CRC Handbook of Thermoelectrics. CRC Press. 1995.
[20] Soni, A.; Zhao, Y. Y.; Yu, L. G.; Aik, M. K. K.; Dresselhaus, M. S.; Xiong, Q. H. Nano Lett. 2012, 12, 1203.
[21] Prokofieva, L. V.; Pshenay-Severin, D. A.; Konstantinov, P. P.; Shabaldin, A. A. Semiconductors. 2009, 43, 973.
[22] Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y.; Minnich, A.; Yu, B.; Yan, X.; Wang, D.; Muto, A.; Vashaee, D.; Chen, X.; Liu, J.; Dresselhaus, M. S.; Chen, G.; Ren, Z. Science. 2008, 320, 634.
[23] Kyratsi, T.; Ioannou, M. J. Electron. Mater. 2012, 42, 1604.
[24] Liu, H.; Shi, X.; Xu, F.; Zhang, L.; Zhang, W.; Chen, L.; Li, Qiang.; Uher, C.; Day, T.; Snyder, G. J. Nat. Mater. 2012, 11, 422.
[25] Slack, G. A. in CRC Handbook of Thermoelectrics (ed. Rowe, D. M.) 407-440 (CRC, 1995).
[26] Kim, J. H.; Chung, D. Y.; Bilc, D.; Loo, S.; Short, J.; Subhendra, D.; Mahanti.; Hogan, T.; Mercouri G.; Kanatzidis. Chem. Mater. 2005, 17, 3606.
[27] McGuire, M. A.; May, A. F.; Singh, D. J.; M.; Du, M. H.; Jellison, G. E. J. Solid State Chem. 2011, 184, 2744.
[28] Mayasree, O.; Sankar, C. R.; Assoud, A.; Kleine, H. Iong. Chem. 2011, 50, 4580.
[29] Zhao, L. D.; Lo, S. H.; Zhang, Y.; Sun, H.; Tan, G.; Uher, C.; Wolverton, C.; David, V. P.; Kanatzidis, M. G. Nature. 2014, 508, 373.
[30] Sheldrick, G. M.; SHELXL-97. University of Göttingen, Germany, 1997.
[31] Pawley, G. S. J. Appl. Crystallogr. 1981, 14, 357.
[32] McCusker, L. B.; Von Dreele, R. B.; Cox, D. E.; Louer, D.; Scardi, P. J. Appl. Cryst. 1999, 32, 36.
[33] Tomeoka, K.; Ohmasa, M.; Sadanaga, R. Mineralogical Journal. 1980, 10, 57.
校內:2024-12-31公開