| 研究生: |
張绣淇 Chang, Shiou-Chi |
|---|---|
| 論文名稱: |
反應式共濺鍍硬質披覆鈦-矽-氮奈米複合薄膜之微結構與機械性質研究 A study on the microstructure and mechanical properties of hard Ti-Si-N nanocomposite coatings by reactive co-sputtering |
| 指導教授: |
鍾震桂
Chung, Cheng-Kui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | Ti-N/Si-N 、Ti-N/Ti-Si-N/Si-N 、Ti-Si-N/Ti-N 、熱穩定性 |
| 外文關鍵詞: | Ti-N/Si-N, Ti-N/Ti-Si-N/Si-N, Ti-Si-N/Ti-N, thermal stability |
| 相關次數: | 點閱:144 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採磁控共濺鍍系統沈積不同的Ti-N、Ti-Si-N單層奈米複合薄膜與不同堆疊方式的多層薄膜,其中包含了Ti-N/Si-N,Ti-N/Ti-Si-N/Si-N與Ti-Si-N/Ti-N。探討氮氣流量、鈦功率與遮板(Shutter)切換時間等製程參數,對薄膜微結構、形貌、成分與機械性質,及其熱穩定性的影響。
本實驗控制鈦靶功率與遮板切換時間,並通入不同的氮氣流量比進行薄膜沈積。完成後將其以表面粗度儀與四點探針量測薄膜厚度與電阻;以低掠角X光繞射儀分析其微結構與結晶相;以掃描式電子顯微鏡觀察表面形貌;以能量散佈光譜儀檢測薄膜化學成份;並以奈米壓痕器檢測薄膜機械性質。最後藉快速退火爐進行1分鐘500與700 °C的退火並探討薄膜的熱穩定性。
實驗結果顯示多層薄膜的結晶性優於單層薄膜,雖機械性質不會大幅提升,但卻具極佳的熱穩定性。經退火後的試片分析顯示,微結構中氧化物訊號的產生,即TiO與TiO¬2相的形成是影響機械性質下降的主因,單層Ti-Si-N薄膜退火溫度500 °C後機械性質就會發生變化,而多層薄膜因層與層之間的介面影響,當退火高達700 °C,微結構與機械性質並無明顯變化,因而得知多層薄膜較單層薄膜具較佳的熱穩定性。
關鍵字:Ti-N/Si-N、Ti-N/Ti-Si-N/Si-N、Ti-Si-N/Ti-N、熱穩定性
In this study, the nanocomposites of Ti-N, Ti-Si-N single layer coatings and multilayer coatings including Ti-N/Si-N, Ti-N/Ti-Si-N/Si-N and Ti-Si-N/Ti-N with different ways were prepared by reactive magnetron co-sputtering system. We’ll discuss the effects of the operating parameters of FN2%, Ti power, and alternating time to the microstructure, morphology, elements, mechanical properties, and thermal stability of those thin films.
The thickness and resistivity were investigated by α-Step and four-point probe, respectively. The microstructure and crystallinity of films were identified by Grazing Incidence X-ray Diffractometer. The morphology was examined by Scanning Electron Microscopy and the chemical composition of the coatings was determined by Energy Dispersive Spectroscopy. The hardness was investigated using a Nano Indenter. Finally, we discussed the thermal stability by using thermal treatments of Rapid Thermal Annealing at 500 °C and 700 °C.
The results revealed the crystallinity of multilayer coatings better than single layer ones resulted in better thermal stability without improving mechanical properties. In analysis of samples after annealing, the diffraction peaks of the main reason of impaired mechanical properties were formation of TiO and TiO2 phases. After annealing at 500 °C, mechanical properties of Ti-Si-N coatings changed. In terms of nano-multilayer coatings annealed at 700 °C, the variation of microstructures and mechanical properties were not apparent due to interface barrier effects. Therefore, the thermal stability of multilayer coatings was better than single layer ones.
Key words:Ti-N/Si-N, Ti-N/Ti-Si-N/Si-N, Ti-Si-N/Ti-N, thermal stability
1. 陳光華, 鄧金祥, “奈米薄膜技術與應用”, 五南圖書出版, 2005.
2. S. Zhang, N. Ali, “Nanocomposite thin films and coatings”, Imperial College Press, 2007.
3. S. Veprek, A. Niederhofer, K. Moto, T. Bolom, H.-D. Mannling, P. Nesladek, G. Dollinger, A. Bergmaier, “Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi nanocomposites with Hv > 80 to > 105 GPa”, Surface and Coatings Technology Vol. 133-134, pp.152-159, 2000.
4. S. Veprek, Maritza G.J. Veprek-Heijman, P. Karvankova, J. Prochazka, “Different approaches to superhard coatings and nanocomposites”, Thin Solid Films Vol. 476, pp. 1-292, 2005.
5. S. PalDey, and S.C. Deevi, “Single layer and multilayer wear resistant coatings of (Ti, Al) N: a review”, Materials Science and Engineering A Vol. 342, pp. 58, 2003.
6. S.C. Tjong, and H. Chen, “Nanocrystalline materials and coatings”, Materials Science and Engineering R 45, pp. 1-88, 2004.
7. B.A. Movchan, A.V. Demchishin, “Study of the structures and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminum oxide and zirconium dioxide”, Physics of Metals and Metallography Vol. 28, pp.83, 1969.
8. J.A. Thornon, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings”, Journal of Vacuum Science Technology Vol. 11, pp.666-670, 1974.
9. R. Messier, A.P. Giri, R.A. Roy, “Revised Structure Zone Model for Thin Films Physical Structure”, Journal of Vacuum Science Technology Vol. A2(2), pp.500-503, 1984.
10. G.E. Dieter, “Mechanical Metallurgy”, McGraw-Hill, 1988.
11. S. Veprek, “Electronic and mechanical properties of nanocrystalline composites when approaching molecular size”, Thin Solid Films Vol.297, pp. 145, 1997.
12. J.S. Koehler, “Attempt to design a strong solid”, Physical review B Vol.2, pp. 541, 1970.
13. H. Holleck, V. Schier, “Multilayer PVD coating for wear protection”, Surface & Coatings Technology Vol. 76-77, pp.328-336, 1995.
14. M. Kong, W. Zhao, L. Wei and G. Li, “Investigationson the microstructure and hardening mechanism of TiN/Si3N4 nanocomposite coatings.” Journal of Physics D: Applied Physics Vol. 40, pp.2858-2863, 2007
15. J. Xu, L. Yu, Y. Azuma, T. Fujimoto, H. Umehara and I. Kojimaa, “Thermal stress hardening of a-Si3N4/nc-TiN nanostructured multilayers”, Applied Physics Letters Vol. 81, pp.4139, 2002.
16. J. Xu, M. Kamiko, Y. Zhou, G. Lu, and R. Yamamoto, “Structure transformations and superhardness effects in V/Ti nanostructured multilayers”, Applied Physics Letters Vol. 81, pp.1189, 2002.
17. L.G. González, J.M. Hernández, F.J. Espinoza-Beltrán, J.M. Saldaña, T. Scholz and G.A. Schneider, “Thermal Stability, Structure and Mechanical Properties of TiSiN Coatings Prepared by Reactive DC Magnetron Co-Sputtering”, Materials Science Forum Vol. 509, pp. 93-98, 2006.
18. T. An, H.W. Tian, M. Wen, W.T. Zheng, “Structures and mechanical properties of TiN/SiNx multilayer films deposited by magnetron sputtering at different N2/Ar gas flow”, Vacuum Vol. 82, pp. 1187-1190, 2008.
19. H.Y. Zhao, Q.L. Fan, L.X. Song, T. Zhang, E.W. Shi, X.F. Hu, “Synthesis and characterization of superhard Ti–Si–N films obtained in an inductively coupled plasma enhanced chemical vapor deposition (ICP-CVD) with magnetic confinement”, Applied Surface Science Vol. 252, pp.3065–3072, 2006.
20. F. Mei, N. Shao, X. Hu, G. Li, M. Gu, “Microstructure and mechanical properties of reactively sputtered Ti–Si–N nanocomposite films”, Materials Letters Vol. 59, pp.2442 – 2445, 2005.
21. S.M. Yang, Y.Y. Chang, D.Y. Wang, D.Y. Lin, W.T. Wu, “Mechanical properties of nano-structured Ti-Si-N films synthesized by cathodic arc evaporation”, Journal of Alloys and Compounds Vol. 440, pp. 375–379, 2007.
22. C.L. Chang, C.T. Lin, P.C. Tsai, W.Y. Ho, D.Y. Wang, “Influence of bias voltages on the structure and wear properties of TiSiN coating synthesized by cathodic arc plasma evaporation”, Thin Solid Films Vol. 516, pp.5324–5329, 2008.
23. R. Chandra, D. Kaur, A.K. Chawla, N. Phinichka, Z.H. Barberd, “Texture development in Ti–Si–N nanocomposite thin films”, Materials Science and Engineering A Vol. 423, pp. 111-115, 2006.
24. C.T. Guo, D. Lee, P.C. Chen, “Deposition of TiSiN coatings by arc ion plating process”, Applied Surface Science Vol. 254, pp.3130–3136,2008
25. H. Söderberga, M. OdénJon, M. Molina-Aldareguia and Lars Hultman, “Nanostructure formation during deposition of TiN/SiNx nanomultilayer films by reactive dual magnetron sputtering”, Journal of physics Vol. 97, pp. 114327, 2005.
26. T. An, M. Wen, C.Q. Hu, H.W. Tian, W.T. Zheng “ Interfacial fracture for TiN/SiNx nano-multilayer coatings on Si (111) characterized by nanoindentation experiments”, Materials Science and Engineering A Vol. 494, pp. 324–328, 2008.
27. S.M. Yang, Y.Y. Chang, D.Y. Lin, D.Y. Wang, W. Wu, “Mechanical and tribological properties of multilayered TiSiN/CrN coatings synthesized by a cathodic arc deposition process”, Surface & Coatings Technology Vol. 202, pp.2176-2181, 2008.
28. D.N. Lee, “A modal for development of orientation of vapour deposits”, Journal of Materials Science Vol. 24, pp. 4375-4378, 1989.
29. J. Pelleg, L.Z. Zevin, S. Lungo, “Reactive-sputter-deposited TiN films on glass substrates”, Thin Solid Films Vol. 197, pp. 117-128, 1991.
30. J.H. Huang, Y.P. Tsai, G.P. Yu,“Effect of processing parameters on the microstructure and mechanical properties of TiN on stainless steel by HCD ion plating”, Thin Solid Films Vol. 355-356, pp. 440- 445, 1999.
31. W.J. Chou, G.P. Yu, J.H. Huang, “Mechanical properties of TiN thin film coatings on 304 stainless steel substrates”, Surface & Coatings Technology Vol. 149, pp. 7-13, 2002.
32. J.H. Huang, K.W. Lau, G.P. Yu, “Effect of nitrogen flow rate on structure and properties of nanocrystalline TiN thin films produced by unbalanced magnetron sputtering”, Surface & Coatings Technology Vol. 191, pp. 17-24, 2005.
33. Z.G. Li, S. Miyake, M. Makino, Y.X. Wu, “Structure and properties of Ti–Si–N with 10 at.% Si deposited using reactive magnetron sputtering with high-flux low-energy ion assistance”, Thin Solid Films Vol. 516, pp.6548-6552, 2008.
34. S. Veprek, H.-D. Mannling, P. Karvankova, J. Prochazka, “The issue of the reproducibility of deposition of superhard nanocomposites with hardness of >50 GPa”, Surface & Coatings Technology Vol. 200, pp. 3876-3885, 2006.
35. 莊達人, “VLSI製造技術”, 高立圖書有限公司, pp. 41-462, 1995.
36. F. Deng, R.A. Johnson, P.M. Asbeck, S.S. Lau, W.B. Dubbelday, T. Hsiao and J. Woo, “Salicidation process using NiSi and its device application ”, Journal of Physics Vol. 81, pp. 8048, 1997.
37. R.E. Hummel, “Electromigration of Ionized Cluster Beam Deposited Aluminum Metallizations”, IEEE/IRPS, pp.207, 1989.
38. D. Mercs, P. Briois, V. Demange, S. Lamy, C. Coddet, “Influence of the addition of silicon on the structure and properties of chromium nitride coatings deposited by reactive magnetron sputtering assisted by RF plasmas”, Surface & Coatings Technology Vol. 201, pp. 6970-6976, 2007.
39. H.N. Shaha, R. Jayaganthana, D. Kaurb, “Influence of silicon content on the microstructure and hardness of CrN coatings deposited by reactive magnetron sputtering”, Materials Chemistry and Physics Vol. 121, pp. 567-571, 2010.
40. G. Sethi, P. Sunal, M.W. Horn and M.T. Lanagan, “Influence of reactive sputter deposition conditions on crystallization of zirconium oxide thin films”, Jounal of Vacuum Science & Technol. A Vol. 27, pp. 579-583, 2009.
41. S.M. Yang, Y.Y. Chang, D.Y. Wang, D.Y. Lin, W.T. Wu “Mechanical properties of nano-structured Ti-Si-N films synthesized by cathodic arc evaporation”, Journal of Alloys and Compounds Vol. 440, pp.375-379, 2007.
42. A. Flink, T. Larsson, J. Sjolen, L. Karlsson, L. Hultman, “Influence of Si on the microstructure of arc evaporated (Ti,Si)N thin films evidence for cubic solid solutions and their thermal stability”, Surface & Coatings Technology Vol. 200, pp.1535-1542, 2005.
43. J. Musil, V. Poulek, V. Valvoda, R. Kuzel, H.A. Jehn and M.E. Baumgartner, “Relation of deposition conditions of Ti-N films prepared by d.c. magnetron sputtering to their microstructure and macrostress.” Surface & Coatings Technology Vol. 60, pp.484 - 489, 1993.
44. S. Noda, K. Tepsanongsuk, Y. Tsuji, Y. Kajikawa, Y. Ogawa and H. Komiyama, “Preferred orientation and film structure of TaN films deposited by reactive magnetron sputtering”, Journal of Vacuum Science & Technology A Vol. 22, pp.333-338, 2004.