簡易檢索 / 詳目顯示

研究生: 吳頡倫
Wu, Chieh-Lun
論文名稱: 二維金屬有機骨架奈米薄片-氧化石墨烯複合膜之製備與硫化/碳化作為全固態超級電容器之電極材料
Fabrication and sulfidation/carbonization of 2D MOF nanoflakes-graphene oxide hybrid films as the electrode materials for all-solid-state supercapacitors
指導教授: 陳東煌
Chen, Dong-Hwang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 111
中文關鍵詞: 金屬有機骨架硫化鈷奈米薄片還原氧化石墨烯超級電容器
外文關鍵詞: metal-organic frameworks, cobalt sulfide, nanoflakes, reduced graphene oxide, supercapacitors
相關次數: 點閱:78下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係有關藉由二維金屬有機骨架 (metal organic frameworks, MOFs) 奈米薄片與氧化石墨烯 (graphene oxide, GO) 之共組裝與硫化製備多孔性硫化鈷 (CoSx)/還原氧化石墨烯 (rGO) 複合薄膜作為超級電容器之正極材料。首先以超音波震盪將奈米立方體結構之ZIF-67分散於GO水溶液中得到ZIF-GO混合溶液,發現當降低ZIF-67在水溶液中之濃度時,ZIF-67之形態由奈米立方體轉變為二維奈米薄片,能有利於複合薄膜之生成。接著,依序將GO、ZIF-GO、GO溶液以真空過濾法製備出三明治結構之GO/ZIF-GO/GO複合薄膜。其中中間層為多孔性ZIF-67奈米薄片與層狀GO共組裝鑲嵌而成,而上、下層之GO則用來幫助穩定複合薄膜。其次,進一步將複合薄膜冷凍乾燥來增加其孔洞性,最後以硫乙醯胺作為硫來源,將複合薄膜以水熱法硫化,同時將GO還原成rGO,製得rGO/CoSx-rGO/rGO複合薄膜。結果顯示,rGO/CoSx-rGO/rGO複合薄膜有良好電化學特性,因其結合硫化鈷之贋電容特性及rGO之電雙層特性與高導電性,在1.0 M KOH電解液中,rGO/CoSx-rGO/rGO在電流密度為1 A/g時之電容值為460 F/g,且經5000次循環後仍維持85 %之初始電容值,證實rGO/CoSx-rGO/rGO確實可作為可撓式超級電容器材料。
    另外,將GO/ZIF-GO/GO複合薄膜以高溫碳化與酸洗後製得三明治結構之rGO/cZIF-rGO/rGO複合薄膜,作為超級電容器之負極材料。結果顯示,rGO/cZIF-rGO/rGO複合薄膜具有高比表面積與高導電性,在1.0M KOH電解液中,rGO/cZIF-rGO/rGO在電流密度為1 A/g時之電容值為132.3 F/g,且經10000次循環後仍維持93.8 %之初始電容值。最後以rGO/CoSx-rGO/rGO作為正極、rGO/cZIF-rGO/rGO作為負極,組裝成全固態非對稱式超級電容器 (asymmetric supercapacitor, aSC),結果顯示此電容器能量密度可達3.25 Wh/kg、功率密度可達1200 W/kg,除可使LED燈發亮外,經10000次循環後仍可維持93.7 %之初始電容值,顯示具有良好的穩定性。若改以活性碳 (active carbon, AC) 作為負極材料組成全固態非對稱式超級電容器rGO/CoSx-rGO/rGO//AC,其能量密度與功率密度可分別提升至10.56 Wh/kg與2250 W/kg,除了可使LED燈發亮外,經10000次循環後也仍可維持92.8 %之初始電容值,展現良好的穩定性。據此,本研究所製得之rGO/CoSx-rGO/rGO複合薄膜在超級電容器上確實具有良好的應用潛力。

    This thesis concerns a facile route for the fabrication of porous cobalt sulfide (CoSx)/reduced graphene oxide (rGO) hybrid films as a flexible freestanding supercapacitor electrode via the coassembly and sulfidation of 2D metal organic framework (MOF) nanoflakes and graphene oxide (GO). Firstly, ZIF-67 nanocubes were added into the aqueous solution of GO and sonicated to yield a mixed dispersion of ZIF-67 and GO (ZIF-GO). It was found that, by decreasing the concentration of ZIF-67 in the aqueous solution, the morphology of ZIF-67 could be changed from nanocubes to 2D nanoflakes which favored the formation of hybrid film. Secondly, the sandwich-like GO/ZIF-GO/GO hybrid film was fabricated by the successive vacuum membrane filtration of GO, ZIF-GO, and GO solutions. The middle layer was porous ZIF-67 nanoflakes-intercalated GO layer constructed via the coassembly of ZIF-67 nanoflakes and GO. The top and bottom GO layers were used to stabilize the hybrid film. To increase the porosity, the hybrid film was further freeze-dried. Finally, the hybrid film was sulfidized via a hydrothermal process using thioacetamide as the sulfur source. This process also led to the reduction of GO to rGO. The resulting rGO/CoSx-rGO/rGO hybrid film was shown to have a good electrochemical property because it combined the good pseudocapacitor property of cobalt sulfide as well as the good conductivity and electric double layer capacitor property of rGO. It exhibited a specific capacitance of about 460 F/g in 1.0 M KOH at a current density of 1 A/g, and 85 % capacitance could be retained after 5000 cycles. This revealed that the proposed facile route for the fabrication of porous hybrid film from GO and MOFs was effective, and the resulting rGO/CoSx-rGO/rGO hybrid film indeed could be used as a flexible freestanding supercapacitor positive electrode.
    In addition, the sandwich-like rGO/cZIF-rGO/rGO hybrid film was also further fabricated as the negative electrode via the carbonization and acid treatment of GO/ZIF-GO/GO hybrid film. It exhibited a specific capacitance of about 132.3 F/g in 1.0 M KOH at a current density of 1 A/g, and 93.7% capacitance could be retained after 10000 cycles because of the good conductivity and high surface area of rGO/cZIF-rGO/rGO hybrid film. Finally, an all-solid-state asymmetric supercapacitor (aSC) was assembled using rGO/CoSx-rGO/rGO and rGO/cZIF-rGO/rGO as positive and negative electrodes, respectively. It exhibited the energy density of 3.25 Wh/kg and the power density of 1200 W/kg. Also, it could light up a red light-emitting diode (LED) and retained 93.7 % of initial capacitance after 10000 cycles, revealing its good cycling stability. By using active carbon (AC) to replace rGO/cZIF-rGO/rGO as the negative electrode, the other all-solid-state aSC rGO/CoSx-rGO/rGO//AC was assembled. Its energy density and power density could be raised up to 10.56 Wh/kg and 2250 W/kg, respectively. In addition to being able to light up a red LED, it also showed good cycling stability. After 10000 cycles, 92.8% of initial capacitance was retained. Accordingly, the resulting rGO/CoSx-rGO/rGO hybrid film indeed has great practical potential in supercapacitors.

    中文摘要 II Abstract IV Extended abstract VI 致謝 X 總目錄 XI 表目錄 XIV 圖目錄 XV 第一章 緒論 1 1.1 石墨烯複合材料 1 1.1.1 石墨烯之簡介 1 1.1.2 石墨烯之製備 4 1.1.3 還原氧化石墨烯奈米複合材料之應用 9 1.2 超級電容器 13 1.2.1 超級電容器之簡介 13 1.2.2 超級電容器之儲能機制 15 1.2.3 超級電容器之新型電極材料發展 17 1.2.4 可撓式超級電容器 24 1.2.5 金屬有機骨架於超級電容器之發展 27 1.3 研究動機 33 第二章 基礎理論 35 2.1 水熱合成法 35 2.2 循環伏安法理論 38 2.3 定電流充放電理論 41 2.4 電化學阻抗頻譜法 43 第三章 實驗 48 3.1 實驗藥品、儀器、材料 48 3.1.1 藥品 48 3.1.2 儀器 50 3.1.3 實驗材料 52 3.2 材料製備 53 3.2.1 氧化石墨烯之製備 53 3.2.2 ZIF-67之製備 55 3.2.3 GO/ZIF-GO/GO薄膜之製備 56 3.2.4 rGO/CoSx-rGO/rGO薄膜之製備 58 3.2.5 rGO/cZIF-rGO/rGO薄膜之製備 59 3.2.6 膠態電解質之製備 60 3.2.7 全固態超級電容器之組裝 61 3.3 性質測定與分析 62 3.4 電化學測試 65 3.4.1 rGO/CoSx-rGO/rGO薄膜之電化學測試 65 3.4.2 rGO/cZIF-rGO/rGO薄膜之電化學測試 66 3.4.3 活性碳電極之製備 66 3.4.4 全固態rGO/CoSx-rGO/rGO//rGO/cZIF-rGO/rGO之電化學測試 67 第四章 結果與討論 68 4.1 複合薄膜之特性與應用 68 4.1.1 rGO/CoSx-rGO/rGO薄膜之鑑定 68 4.1.2 rGO/cZIF-rGO/rGO薄膜之鑑定 77 4.1.3 rGO/CoSx-rGO/rGO薄膜之電化學特性 82 4.1.4 rGO/cZIF-rGO/rGO薄膜之負極電化學特性 92 4.2 rGO/CoSx-rGO/rGO//rGO/cZIF-rGO/rGO全固態超級電容器之電容特性 95 4.3 rGO/CoSx-rGO/rGO//AC全固態超級電容器之電容特性 100 第五章 結論 103 參考文獻 104

    [1] J. Lloyd-Hughes and T.-I. Jeon, A review of the terahertz conductivity of bulk and nano-materials, J. Infrared Millim. Terahertz Waves, 33(9), 871–925, 2012.
    [2] A. K. Geim, Graphene: status and prospects, Science, 324(5934), 1530–1534, 2009.
    [3] C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321(5887), 385, 2008.
    [4] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Fine structure constant defines visual transparency of graphene, Science, 320(5881), 1308, 2008.
    [5] M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Graphene-based ultracapacitors, Nano Lett., 8(10), 3498–3502, 2008.
    [6] X.-C. Dong, H. Xu, X.-W. Wang, Y.-X. Huang, M. B. Chan-Park, H. Zhang, L.-H. Wang, W. Huang, and P. Chen, 3D Graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection, ACS Nano, 6(4), 3206–3213, 2012.
    [7] S.-M. Paek, E. Yoo, and I. Honma, Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure, Nano Lett., 9(1), 72–75, 2009.
    [8] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature, 457(7230), 706–710, 2009.
    [9] R. S. Sundaram, C. Gómez-Navarro, K. Balasubramanian, M. Burghard, and K. Kern, Electrochemical modification of graphene, Adv. Mater., 20(16), 3050–3053, 2008.
    [10] B. C. Brodie, XIII. On the atomic weight of graphite, Philos. Trans. Royal Soc. B, 149, 249–259, 1859.
    [11] W. S. Hummers and R. E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc., 80(6), 1339–1339, 1958.
    [12] Y. Xu, H. Bai, G. Lu, C. Li, and G. Shi, Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets, J. Am. Chem. Soc., 130(18), 5856–5857, 2008.
    [13] K. P. Loh, Q. L. Bao, P. K. Ang, and J. X. Yang, The chemistry of graphene, , J. Mater. Chem., 20(12), 2277–2289, 2010.
    [14] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45(7), 1558–1565, 2007.
    [15] M. Nasrollahzadeh, F. Babaei, P. Fakhri, and B. Jaleh, Synthesis, characterization, structural, optical properties and catalytic activity of reduced graphene oxide/copper nanocomposites, RSC Adv., 5(14), 10782–10789, 2015.
    [16] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, Layer area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Lett., 9(8), 3087–3087, 2009.
    [17] A. V. Zaretski and D. J. Lipomi, Processes for non-destructive transfer of graphene: widening the bottleneck for industrial scale production, Nanoscale, 7(22), 9963–9969, 2015.
    [18] K. S. Novoselov and A. H. Castro Neto, Two-dimensional crystals-based heterostructures: materials with tailored properties, Phys. Scr., 2012.
    [19] S. Bai, X. Shen, G. Zhu, M. Li, H. Xi, and K. Chen, In situ growth of NixCo100–x nanoparticles on reduced graphene oxide nanosheets and their magnetic and catalytic properties, ACS Appl. Mater. Interfaces, 4(5), 2378–2386, 2012.
    [20] S. Peng, L. Li, C. Li, H. Tan, R. Cai, H. Yu, S. Mhaisalkar, M. Srinivasan, S. Ramakrishna, and Q. Yan, In situ growth of NiCo2S4 nanosheets on graphene for high-performance supercapacitors, Chem. Commun., 49(86), 10178–10180, 2013.
    [21] T. Huang, L. Zhang, H. Chen, and C. Gao, Sol–gel fabrication of a non-laminated graphene oxide membrane for oil/water separation, J. Mater. Chem. A, 3(38), 19517–19524, 2015.
    [22] Z. Chen, J. Li, Y. Chen, Y. Zhang, G. Xu, J. Yang, and Y. Feng, Microwave-hydrothermal preparation of a graphene/hierarchy structure MnO2 composite for a supercapacitor, Particuology, 15, 27–33, 2014.
    [23] P. Moozarm Nia, W. P. Meng, F. Lorestani, M. R. Mahmoudian, and Y. Alias, Electrodeposition of copper oxide/polypyrrole/reduced graphene oxide as a nonenzymatic glucose biosensor, Sens. Actuator B-Chem., 209, 100–108, 2015.
    [24] R. F. Service, Materials science. New supercapacitor promises to pack more electrical punch, Science, 313(5789), 902, 2006.
    [25] X. Lu, M. Yu, G. Wang, Y. Tong, and Y. Li, Flexible solid-state supercapacitors: design, fabrication and applications, Energy Environ. Sci., 7(7), 2160, 2014.
    [26] Y. Yoon, K. Lee, and H. Lee, Low-dimensional carbon and MXene-based electrochemical capacitor electrodes, Nanotechnology, 27(17), 172001, 2016.
    [27] F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang, L. Fu, Y. Zhu, Q. Zhou, Y. Wu, and W. Huang, Latest advances in supercapacitors: from new electrode materials to novel device designs, Chem. Soc. Rev., 46(22), 6816–6854, 2017.
    [28] O. M. Yaghi and H. Li, Hydrothermal synthesis of a metal-organic framework containing large rectangular channels, J. Am. Chem. Soc., 117(41), 10401–10402, 1995.
    [29] L. Kang, S.-X. Sun, L.-B. Kong, J.-W. Lang, and Y.-C. Luo, Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors, Chin. Chem. Lett., 25(6), 957–961, 2014.
    [30] D. Sheberla, J. C. Bachman, J. S. Elias, C. J. Sun, Y. Shao-Horn, and M. Dinca, Conductive MOF electrodes for stable supercapacitors with high areal capacitance, Nat. Mater., 16(2), 220–224, 2017.
    [31] S. S. Han, J. L. Mendoza-Cortes, and W. A. Goddard, 3rd, Recent advances on simulation and theory of hydrogen storage in metal-organic frameworks and covalent organic frameworks, Chem. Soc. Rev., 38(5), 1460–1476, 2009.
    [32] C. R. DeBlase, K. E. Silberstein, T. T. Truong, H. D. Abruna, and W. R. Dichtel, beta-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage, J. Am. Chem. Soc., 135(45), 16821–16824, 2013.
    [33] O. Mashtalir, M. R. Lukatskaya, A. I. Kolesnikov, E. Raymundo-Pinero, M. Naguib, M. W. Barsoum, and Y. Gogotsi, The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene), Nanoscale, 8(17), 9128–9133, 2016.
    [34] Z. Ling, C. E. Ren, M.-Q. Zhao, J. Yang, J. M. Giammarco, J. Qiu, M. W. Barsoum, and Y. Gogotsi, Flexible and conductive MXene films and nanocomposites with high capacitance, Proc. Natl. Acad. Sci, 111, 16676–16681, 2014.
    [35] C. Hao, B. Yang, F. Wen, J. Xiang, L. Li, W. Wang, Z. Zeng, B. Xu, Z. Zhao, Z. Liu, and Y. Tian, Flexible all-solid-state supercapacitors based on liquid-exfoliated black-phosphorus nanoflakes, Adv. Mater., 28(16), 3194–3201, 2016.
    [36] B. D. Gates, Flexible electronics, Science, 323(5921), 1566, 2009.
    [37] Z. Niu, H. Dong, B. Zhu, J. Li, H. H. Hng, W. Zhou, X. Chen, and S. Xie, Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture, Adv. Mater., 25(7), 1058–1064, 2013.
    [38] X. Yang, J. Zhu, L. Qiu, and D. Li, Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors, Adv. Mater., 23(25), 2833–2838, 2011.
    [39] B. Li, H. M. Wen, Y. Cui, W. Zhou, G. Qian, and B. Chen, Emerging multifunctional metal-organic framework materials, Adv. Mater., 28(40), 8819–8860, 2016.
    [40] W. Xuan, C. Zhu, Y. Liu, and Y. Cui, Mesoporous metal-organic framework materials, Chem. Soc. Rev., 41(5), 1677–1695, 2012.
    [41] K. M. Choi, H. M. Jeong, J. H. Park, Y.-B. Zhang, J. K. Kang, and O. M. Yaghi, Supercapacitors of nanocrystalline metal–organic frameworks, ACS Nano, 8(7), 7451–7457, 2014.
    [42] T. K. Kim, K. J. Lee, J. Y. Cheon, J. H. Lee, S. H. Joo, and H. R. Moon, Nanoporous metal oxides with tunable and nanocrystalline frameworks via conversion of metal-organic frameworks, J. Am. Chem. Soc., 135(24), 8940–8946, 2013.
    [43] X. Xu, R. Cao, S. Jeong, and J. Cho, Spindle-like mesoporous alpha-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries, Nano Lett., 12(9), 4988–4991, 2012.
    [44] H. L. Jiang, B. Liu, Y. Q. Lan, K. Kuratani, T. Akita, H. Shioyama, F. Zong, and Q. Xu, From metal-organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake, J. Am. Chem. Soc., 133(31), 11854–11857, 2011.
    [45] K. Xi, S. Cao, X. Peng, C. Ducati, R. V. Kumar, and A. K. Cheetham, Carbon with hierarchical pores from carbonized metal-organic frameworks for lithium sulphur batteries, Chem. Commun., 49(22), 2192–2194, 2013.
    [46] S. Liu, J. Zhou, Z. Cai, G. Fang, Y. Cai, A. Pan, and S. Liang, Nb2O5 quantum dots embedded in MOF derived nitrogen-doped porous carbon for advanced hybrid supercapacitor applications, J. Mater. Chem. A, 4(45), 17838–17847, 2016.
    [47] C. Zhang, J. Xiao, X. Lv, L. Qian, S. Yuan, S. Wang, and P. Lei, Hierarchically porous Co3O4/C nanowire arrays derived from a metal–organic framework for high performance supercapacitors and the oxygen evolution reaction, J. Mater. Chem. A, 4(42), 16516–16523, 2016.
    [48] Y. Liu, J. Xu, and S. Liu, Porous carbon nanosheets derived from Al-based MOFs for supercapacitors, Microporous Mesoporous Mater., 236, 94–99, 2016.
    [49] S. Zhong, C. Zhan, and D. Cao, Zeolitic imidazolate framework-derived nitrogen-doped porous carbons as high performance supercapacitor electrode materials, Carbon, 85, 51–59, 2015.
    [50] W. Bao, A. K. Mondal, J. Xu, C. Wang, D. Su, and G. Wang, 3D hybrid–porous carbon derived from carbonization of metal organic frameworks for high performance supercapacitors, J. Power Sources, 325, 286–291, 2016.
    [51] Y. C. Wang, W. B. Li, L. Zhao, and B. Q. Xu, MOF-derived binary mixed metal/metal oxide @carbon nanoporous materials and their novel supercapacitive performances, Phys. Chem. Chem. Phys., 18(27), 17941-17948, 2016.
    [52] J. Kim, C. Young, J. Lee, M. S. Park, M. Shahabuddin, Y. Yamauchi, and J. H. Kim, CNTs grown on nanoporous carbon from zeolitic imidazolate frameworks for supercapacitors, Chem. Commun., 52(88), 13016–13019, 2016.
    [53] L. Wan, J. Wei, Y. Liang, Y. Hu, X. Chen, E. Shamsaei, R. Ou, X. Zhang, and H. Wang, ZIF-derived nitrogen-doped carbon/3D graphene frameworks for all-solid-state supercapacitors, RSC Adv., 6(80), 76575–76581, 2016.
    [54] I. A. Khan, M. Choucair, M. Imran, A. Badshah, and M. A. Nadeem, Supercapacitive behavior of microporous carbon derived from zinc based metal-organic framework and furfuryl alcohol, Int. J. Hydrogen Energy, 40(39), 13344–13356, 2015.
    [55] H. Yi, H. Wang, Y. Jing, T. Peng, and X. Wang, Asymmetric supercapacitors based on carbon nanotubes@NiO ultrathin nanosheets core-shell composites and MOF-derived porous carbon polyhedrons with super-long cycle life, J. Power Sources, 285, 281–290, 2015.
    [56] S. Chen, M. Xue, Y. Li, Y. Pan, L. Zhu, D. Zhang, Q. Fang, and S. Qiu, Porous ZnCo2O4 nanoparticles derived from a new mixed-metal organic framework for supercapacitors, Inorg. Chem. Front, 2(2), 177–183, 2015.
    [57] X. Y. Yu, L. Yu, H. B. Wu, and X. W. Lou, Formation of nickel sulfide nanoframes from metal-organic frameworks with enhanced pseudocapacitive and electrocatalytic properties, Angew. Chem. Int. Ed. Engl., 54(18), 5331–5335, 2015.
    [58] R. Wu, D. P. Wang, V. Kumar, K. Zhou, A. W. Law, P. S. Lee, J. Lou, and Z. Chen, MOFs-derived copper sulfides embedded within porous carbon octahedra for electrochemical capacitor applications, Chem. Commun., 51(15), 3109–3112, 2015.
    [59] A. Panneerselvam, M. A. Malik, M. Afzaal, P. O'Brien, and M. Helliwell, The chemical vapor deposition of nickel phosphide or selenide thin films from a single precursor, J. Am. Chem. Soc., 130(8), 2420–2421, 2008.
    [60] R. Bendi, V. Kumar, V. Bhavanasi, K. Parida, and P. S. Lee, Metal organic framework-derived metal phosphates as electrode materials for supercapacitors, Adv. Energy Mater., 6(3), 1501833, 2016.
    [61] D. Yu, L. Ge, X. Wei, B. Wu, J. Ran, H. Wang, and T. Xu, A general route to the synthesis of layer-by-layer structured metal organic framework/graphene oxide hybrid films for high-performance supercapacitor electrodes, J. Mater. Chem. A, 5(32), 16865–16872, 2017.
    [62] M. Saraf, R. Rajak, and S. M. Mobin, A fascinating multitasking Cu-MOF/rGO hybrid for high performance supercapacitors and highly sensitive and selective electrochemical nitrite sensors, J. Mater. Chem. A, 4(42), 16432-16445, 2016.
    [63] P. C. Banerjee, D. E. Lobo, R. Middag, W. K. Ng, M. E. Shaibani, and M. Majumder, Electrochemical capacitance of Ni-doped metal organic framework and reduced graphene oxide composites: more than the sum of its parts, ACS Appl. Mater. Interfaces, 7(6), 3655–3664, 2015.
    [64] P. Wen, P. Gong, J. Sun, J. Wang, and S. Yang, Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density, J. Mater. Chem. A, 3(26), 13874–13883, 2015.
    [65] Y. Zhang, B. Lin, Y. Sun, X. Zhang, H. Yang, and J. Wang, Carbon nanotubes@metal–organic frameworks as Mn-based symmetrical supercapacitor electrodes for enhanced charge storage, RSC Adv., 5(72), 58100–58106, 2015.
    [66] W. Xia, C. Qu, Z. Liang, B. Zhao, S. Dai, B. Qiu, Y. Jiao, Q. Zhang, X. Huang, W. Guo, D. Dang, R. Zou, D. Xia, Q. Xu, and M. Liu, High-performance energy storage and conversion materials derived from a single metal-organic framework/graphene aerogel composite, Nano Lett., 17(5), 2788–2795, 2017.
    [67] X. Bai, J. Liu, Q. Liu, R. Chen, X. Jing, B. Li, and J. Wang, In-situ fabrication of MOF-derived Co-Co layered double hydroxide hollow nanocages/graphene composite: a novel electrode material with superior electrochemical performance, Chemistry, 23(59), 14839–14847, 2017.
    [68] M. A. Einarsrud and T. Grande, 1D oxide nanostructures from chemical solutions, Chem. Soc. Rev., 43(7), 2187–2199, 2014.
    [69] J. O. Eckert, C. C. Hung‐Houston, B. L. Gersten, M. M. Lencka, and R. E. Riman, Kinetics and mechanisms of hydrothermal synthesis of barium titanate, J. Am. Ceram. Soc., 79(11), 2929–2939, 1996.
    [70] S. Gouws, Voltammetric characterization methods for the PEM evaluation of catalysts, Electrolysis, InTech, 2012.
    [71] P. T. Kissinger and W. R. Heineman, Cyclic voltammetry, J. Chem. Educ., 60(9), 702, 1983.
    [72] Q. Wang, F. Gao, B. Xu, F. Cai, F. Zhan, F. Gao, and Q. Wang, ZIF-67 derived amorphous CoNi2S4 nanocages with nanosheet arrays on the shell for a high-performance asymmetric supercapacitor, Chem. Eng. J., 327, 387–396, 2017.
    [73] B. Conway and J. Mozota, Surface and bulk processes at oxidized iridium electrodes—II. Conductivity-switched behaviour of thick oxide films, Electrochim. Acta, 28(1), 9-16, 1983.
    [74] K. C. Liu and M. A. Anderson, Porous nickel oxide/nickel films for electrochemical capacitors, J. Electrochem. Soc., 143(1), 124–130, 1996.
    [75] A. Sacco, Electrochemical impedance spectroscopy: Fundamentals and application in dye-sensitized solar cells, J. Renew. Sustain. Energy, 79, 814–829, 2017.
    [76] J. R. Macdonald and E. Barsoukov, Impedance spectroscopy: theory, experiment, and applications, History, 1(8), 2005.
    [77] 陸瑞東, 以十二烷基胺修飾之碳材及海膽型碳材為質子交換膜燃料電池觸媒載體之研究, 成功大學化學工程學系學位論文, 1–189, 2012.
    [78] E. P. Randviir and C. E. Banks, Electrochemical impedance spectroscopy: an overview of bioanalytical applications, Anal. Methods, 5(5), 1098, 2013.
    [79] H. Hu, Bu Y. Guan, and Xiong W. Lou, Construction of complex CoS hollow structures with enhanced electrochemical properties for hybrid supercapacitors, Chem., 1(1), 102–113, 2016.
    [80] S. L. Flegler, J. W. Heckman Jr, and K. L. Klomparens, Scanning and transmission electron microscopy: an introduction, Oxford University Press(UK), 1993, 225, 1993.
    [81] A. K. Kercher and D. C. Nagle, Microstructural evolution during charcoal carbonization by X-ray diffraction analysis, Carbon, 41(1), 15–27, 2003.
    [82] J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. Ritchie, J. H. J. Scott, and D. C. Joy, Scanning electron microscopy and X-ray microanalysis. Springer, 2017.
    [83] E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular vibrations: the theory of infrared and Raman vibrational spectra. Courier Corporation, 1955.
    [84] M. J. Matthews, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, and M. Endo, Origin of dispersive effects of the Raman D band in carbon materials, Phys. Rev. B, 59(10), 6585–6588, 1999.
    [85] S. R. Ede, S. Anantharaj, K. T. Kumaran, S. Mishra, and S. Kundu, One step synthesis of Ni/Ni(OH)2 nano sheets (NSs) and their application in asymmetric supercapacitors, RSC Adv., 7(10), 5898–5911, 2017.
    [86] X. Zhang, J. Luo, P. Tang, X. Ye, X. Peng, H. Tang, S.-G. Sun, and J. Fransaer, A universal strategy for metal oxide anchored and binder-free carbon matrix electrode: A supercapacitor case with superior rate performance and high mass loading, Nano Energy, 31, 311–321, 2017.

    無法下載圖示 校內:2023-04-24公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE