簡易檢索 / 詳目顯示

研究生: 何瑞玉
He, Ruei-Yu
論文名稱: 表面電漿子顯微術於活體細胞膜影像之應用
Surface Plasmon Polariton Microscopy for Living Cell Membrane Imaging
指導教授: 張志涵
Chang, Chih-Han
共同指導教授: 陳顯禎
Chen, Shean-Jen
學位類別: 博士
Doctor
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 94
中文關鍵詞: 表面電漿子表面電漿子增強螢光活體細胞膜影像表面電漿子相位顯微術
外文關鍵詞: surface plasmons, surface plasmon enhanced fluorescence, live cell membrane image, surface plasmon phase microscopy
相關次數: 點閱:91下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用全內反射式螢光顯微術(total internal reflection fluorescence microscopy,TIRFM)來觀測生化表面上的活體細胞不只能提供對細胞功能多一層的了解,更改善了影像的訊噪比(signal-to-noise ratio,SNR)。對於更動態的螢光分子影像而言,螢光訊號強度是必須被增強的。此論文提出一藉由奈米銀膜之表面電漿子(surface plasmons,SPs)來增強螢光訊號的表面電漿子增強螢光(surface plasmon enhanced fluorescence,SPEF)顯微術。實驗數據與模擬結果顯示相較於傳統的全內反射式螢光顯微術,表面電漿子增強螢光顯微術可獲得十倍螢光強化的活體細胞膜影像。但是單光子表面電漿子增強螢光顯微術沿傳播方向會漸漸失去侷限激發的特性,造成螢光成像為漸逝場(evanescent field)與散射光共同激發而後疊加所致。相較於單光子表面電漿子增強螢光顯微鏡,具較小激發體積與較低散射的雙光子表面電漿子增強螢光顯微鏡不僅可達成較高訊噪比的活體細胞膜螢光成像,更因可使螢光光子有較短的生命週期(lifetime)進而減少了光致漂白效應(photobleaching)並增加了光穩定性(photostability)。最後,此研究展示了廣視野(wide-field)物鏡式表面電漿子相位顯微術與表面電漿子增強螢光顯微術的首次結合,並用於同時觀測生化基材表面上活體細胞接觸區域的影像。整合移相干涉術(phase-shift interferometry)與共光程(common-path)光路設計之表面電漿子相位顯微術可提供具長時間穩定性的高靈敏相位資訊。同時,表面電漿子增強螢光顯微鏡可提供較亮的螢光影像。整合後的顯微鏡再透過厚度30 奈米的銀薄膜來完成高數值孔徑(numerical aperture)物鏡式的表面電漿子激發。此顯微鏡已成功發展並用於即時觀察轉染過含雙色胺酸功能區氧化還原酶(WOX1)/綠螢光蛋白(eGFP)基因的活體猴子腎臟纖維母細胞(COS-7 fibroblasts)的胞膜/基質接觸區域與同時取得此區域之高靈敏度相位影像。

    Using a total internal reflection fluorescence microscopy (TIRFM) technique to image live cells on a biosurface not only provides an enhanced understanding of cellular functions, but also improves the signal-to-noise (SNR) ratio of the images. The intensity of the fluorescence signal must be increased if a more dynamic biomolecular imaging capability is required. Accordingly, this dissertation presents a surface plasmon enhanced fluorescence (SPEF) technique in which the fluorescence signals are enhanced via surface plasmons (SPs) offered by a silver nanolayer. The results demonstrate that live cell membrane images are brighter by approximately one order of magnitude than those provided by conventional TIRFM. However, the confinement of one-photon SPEF excitation is gradually loosed in its propagation direction, and therefore the biological fluorescent image is generated by the excitation of the superposition of an evanescent field and a scattered light component. In comparison with the one-photon SPEF, a two-photon SPEF can not only achieve higher SNR cell membrane imaging due to its smaller excitation volume and lower scattering, but also reduce photobleaching and increase photostability due to having a shorter fluorophore lifetime. Furthermore, the first combination for wide-field objective-based SPEF microscopy and surface plasmon phase microscopy has been developed to image living cells’ contacts on the surface of a bio-substrate simultaneously. The phase microscopy with a phase-shift interferometry and common-path optical setup can provide high-sensitivity phase information in long-term stability. Simultaneously, the SPEF imaging can supply bright fluorescent images. The combined microscope imposes a high numerical aperture oil-immersion objective upon the excitation of the SPs through a silver film with a thickness of 30 nm. The developed microscope is successfully applied to the real-time bright observation of living COS7 fibroblasts transfected with eGFP-WOX1 construct on the cell-substrate contact region and the high-sensitivity phase image of the cell-substrate contacts at the same time.

    Abstract……………………………………………………………………………………………….I 中文摘要......................................................................................................III Acknowledgement………………………………………………………………………………….IV Table of Contents…………………………………………………………………………………V Abbreviation………………………………………………………………………………………VIII List of figures……………………………………………………………………………………….X Chapter 1 Introduction……………………………………………………………………………..1 1.1 Cellular and molecular imaging……………………………………………………………1 1.2 Surface wave microscopy………………………………………………………………….2 1.3 Motivation………………………………………………………………………………….3 1.4 Outlines…………………………………………………………………………………….4 Chapter 2 Principles of Surface Plasmon Microscopy……………………………6 2.1 Total internal reflection fluorescence………………………………………………………6 2.1.1 Evanescent field and TIRF excitation……………………………………………..7 2.1.2 Evanescent-field excitation with an external prism……………………………….9 2.1.3 Evanescent-field excitation through an objective configuration …………………11 2.1.4 Two-photon TIRF excitation……………………………………………………..14 2.2 Surface plasmon resonance……………………………………………………………….15 2.2.1 Dispersion relation of surface plasmons…………………………………………15 2.2.2 Spatial extension of the surface plasmons in the semi-infinite plane ……………19 2.2.3 Excitation of surface plasmons by light………………………………………….20 2.3 Surface plasmon enhanced fluorescence…………………………………………………24 2.3.1 Principles of surface plasmon enhanced fluorescence…………………………24 2.3.2 SPEF excitation…………………………………………………………………..26 2.3.3 Two-photon SPEF excitation…………………………………………………….28 2.4 Surface plasmon phase……………………………………………………………………29 2.4.1 Phase characterization of surface plasmon resonance…………………………...29 2.4.2 Propagation length of the SPs on a thin film…………………………………….31 2.4.3 Spatial resolution and contrast of surface plasmon phase image ………………...35 Chapter 3 Surface Plasmon Imaging System……………………………………36 3.1 Prism-based SPEF microscope…………………………………………………………...36 3.1.1 Optical system setup……………………………………………………………..36 3.1.2 Choice of the metal film…………………………………………………………40 3.1.3 Reflectivity and enhancement factor…………………………………………….41 3.2 Prism-based surface plasmon enhanced fluorescence and phase microscope…………………………………………………………………………………………45 3.2.1 Optical system setup…………………………………………………………….45 3.2.2 Phase construction……………………………………………………………….48 3.2.3 Phase stability and detection limit……………………………………………….48 3.2.4 Surface plasmon phase imaging with an external prism v.s. through the objective………………………………………………………………………………….50 3.3 Objective-based surface plasmon enhanced fluorescence and phase microscope……………………………………………………………………....51 3.3.1 Optical system setup……………………………………………………………..51 3.3.2 Reflectivity and enhancement factor…………………………………………….53 Chapter 4 Experimental Results and Discussion………………………………………55 4.1 Sample preparation……………………………………………………………………….55 4.1.1 Cell culture and transient gene expression……………………………………….55 4.1.2 Surface modification……………………………………………………………..56 4.1.3 WW domain-containing oxidoreductase WOX1 : a candidate tumor suppressor.57 4.1.4 Time-lapse TIRF image: Complement c1q activates tumor suppressor WWOX to induce apoptosis in prostate cancer cells……………………………………..60 4.2 Live cell membrane imaging using prism-type SPEF microscopy……………………….61 4.2.1 SPEF images of melanoma-GFP-tagged TM cells………………………………62 4.2.2 Two-photon TIRF images of the living COS7 cells……………………………..67 4.2.3 Two-photon SPEF images of the living COS7 cells……………………………68 4.2.4 Optimal design for thickness of a spacer………………………………………69 4.2.5 Live cell images with high-power femtosecond laser illumination……………71 4.3 Imaging live cell membranes via surface plasmon enhanced fluorescence and phase microscopy……………………………………………………………………………………...72 4.3.1 Considerations of enhancement and lateral resolution…………………………..73 4.3.2 Appropriate setup for surface plasmon enhanced fluorescence excitation………76 4.3.3 Simultaneous fluorescence and phase imaging…………………………………..77 Chapter 5 Conclusions……………………………………………………………………………80 References…………………………………………………………………………………………..82 CURRICULUM VITAE……………………………………………………………………………91

    1. D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Traffic 2, 764-774 (2001).
    2. S. E. Sund and D. Axelrod, “Actin dynamics at the living cell submembrane imaged by total internal reflection fluorescence photobleaching,” Biophys. J. 79, 1655-1669 (2000).
    3. J. B. Pawley ed., Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006).
    4. D. Toomre and D. J. Manstein, “Lighting up the cell surface with evanescent wave microscopy,” Trends Cell Biol. 11, 298-303 (2001).
    5. G. A. Truskey, J. S. Burmeister, E. Grapa, and W. M. Reichert, “Total internal reflection fluorescence microscopy (TIRFM) II. Topographical mapping of relative cell/substratum separation distances,” J. Cell Sci. 103, 491-499 (1992).
    6. W. J. Betz, F. Mao, and C. B. Smith, “Imaging exocytosis and endocytosis,” Curr. Opin. Neurobiol. 6, 365-371 (1996).
    7. R. Sailer, W. S. Strauss, H. Emmert, K. Stock, R. Steiner, and H. Schneckenburger, “Plasma membrane associated location of sulfonated meso-tetraphenylporphyrins of different hydrophilicity probed by total internal reflection fluorescence spectroscopy,” Photochem. Photobiol. 71, 460-465 (2000).
    8. A. G. Notcovich, V. Zhuk, and S. G. Lipson, “Surface plasmon resonance phase imaging,” Appl. Phys. Let. 76, 1665-1667 (2000).
    9. G. Stabler, M. G. Somekh, and C. W. See, “High-resolution wide-field surface plasmon microscopy,” J. Microsc. 214, 328-333 (2004).
    10. J. A. Steyer and W. Almers, “A real-time view of within life within 100 nm of the plasma membrane,” Nat. Rev. Mol. Cell Biol. 2, 268-276 (2001).
    11. H. Schneckenburger, “Total internal reflection fluorescence microscopy: technical innovations and novel applications,” Curr. Opin. Biotechnol. 16, 13-18 (2005).
    12. E. H. Hellen and D. Axelrod, “Fluorescence emission at dielectric and metal-film interfaces,” J. Opt. Soc. Am. B 4, 337-350 (1987).
    13. D. Loerke, B. Preitz, W. Stuhmer, and M. Oheim, “Super-resolution measurements with evanescent-wave fluorescence excitation using variable beam incidence,” J. Biomed. Opt. 5, 23-30 (2000).
    14. A. L. Stout and D. Axelrod “Evanescent field excitation of fluorescence by epi-illumination microscopy,” Appl. Opt. 28, 5237-5242 (1989).
    15. M. Tokunaga “Single-molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy,” Biochem. Biophys. Res. Commun. 235, 47-53 (1997).
    16. Y. Kawano “High-numerical aperture objective lenses and optical system improved objective-type total internal reflection fluorescence microscopy,” Proc. SPIE 4098, 142-53 (2001)
    17. F. Schapper, J. T. Goncalves, and M. Oheim, “Fluorescence imaging with two-photon evanescent-wave excitation,” Eur. Biophys. J. 32, 635-643 (2003).
    18. M. Oheim and F. Schapper, “Non-linear evanescent-field imaging,” J. Phys. D: Appl. Phys. 38, R185-R197 (2005).
    19. A. Rohrbach, “Observing secretory granules with a multiangle evanescent wave microscope,” Biophys. J. 78, 2641-2654 (2000).
    20. Z. Huang and N. L. Thompson, “Theory for two-photon excitation in pattern photobleaching with evanescent illumination,” Biophys. Chem. 47, 241-249 (1993).
    21. G. L. Duveneck, M. A. Bopp, M. Ehrat, M. Haiml, U. Keller, M.A. Bader, G. Marowsky, and S. Soria, “Evanescent-field-induced two-photon fluorescence: excitation of macroscopic areas of planar waveguides,” Appl. Phys. B 73, 869-871 (2001).
    22. S. Soria, T. Katchalski, E. Teitelbaum, A. A. Friesem, and G. Marowsky, “Enhanced two-photon fluorescence excitation by resonant grating waveguide structures,” Opt. Lett. 29, 1989-1991 (2004).
    23. M. Kiguchi, M. Kato, M. Okunaka, and Y. Taniguchi, “New method of measuring second harmonic generation efficiency using powder crystals,” Appl. Phys. Lett. 60, 1933-1935 (1992).
    24. N. Bloembergen and P.S. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128, 602-622 (1962).
    25. J. W. Chon, M. Gu, C. Bullen, and P. Mulvaney, “Two-photon fluorescence scanning near-field microscopy based on a focused evanescent field under total internal reflection,” Opt. Lett. 28, 1930-1932 (2003).
    26. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1998).
    27. A. V. Zayats and I. I. Smolyaninov. “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A: Pure Appl. Opt. 5, S16–S50 (2003).
    28. K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16, 55-62 (2005).
    29. J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298, 1-24 (2001).
    30. J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301, 261-277 (2002).
    31. J. R. Lakowicz, Y. Shen, Z. Gryczynski, S. D’Auria, and I. Gryczynski, “Intrinsic fluorescence from DNA can be enhanced by metallic particles,” Biochem. Biophys. Res. Com. 286, 875-879 (2001).
    32. I. Gryczynski, J. Malicka, Y. Shen, Z. Gryczynski, and J. R. Lakowicz, “Multiphoton excitation of fluorescence near metallic particles:enhanced and localized excitation,” J. Phys. Chem. B 106, 2191-2195 (2002).
    33. C. D. Geddes and J. R. Lakowicz, “Metal-enhanced fluorescence,” J. Fluores. 12, 121-129 (2002).
    34. K. Tawa and W. Knoll, “Mismatching base-pair dependence of the kinetics of DNA-DNA hybridization studied by surface plasmon fluorescence spectroscopy,” Nucleic Acids Res. 32, 2372-2377 (2004).
    35. F. Yu, B. Persson, S. Lofas, and W. Knoll, “Surface plasmon fluorescence immunoassay of free prostate-specific antigen in human plasma at the femtomolar level,” Anal. Chem. 76, 6765-6770 (2004).
    36. E. Matveeva, Z. Gryczynski, J. Malicka, I. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces,” Anal. Biochem. 334, 303-311 (2004).
    37. O. Stranik, H. M. McEvoy, C. McDonagh, and B. D. MacCraith, “Plasmonic enhancement of fluorescence for sensor applications,” Sens. Actuators B 107, 148-153 (2005).
    38. G. Raschke, S. Kowarik, T. Franzl, C. So1nnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Ku1rzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935-938 (2003).
    39. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5, 829-835 (2005).
    40. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1998).
    41. S.-J. Chen, F. C. Chien, G. Y. Lin, and K. C. Lee, “Enhanced the resolution of surface plasmon resonance biosensors by controlling size and distribution of nanoparticles,” Opt. Lett. 29, 1390-1392 (2004).
    42. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
    43. M. Ohtsu, Progress in Nano-Electro-Optics I: Basics and Theory of Near-field Optics (Springer, 2003).
    44. H. Knobloch, H. Brunner, A. Leitner, F. Aussenegg, and W. Knoll, “Probing the evanescent field of propagating plasmon surface polaritons by fluorescence and Raman spectroscopies,” J. Chem. Phys. 98, 10093-10095 (1993).
    45. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
    46. W. H. Weber and C. F. Eagen, “Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal,” Opt. Lett. 4, 236-238 (1979).
    47. F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94, 023005 (2005).
    48. J. Enderlein and T. Ruckstuhl, “The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection,” Opt. Express 13, 8855-8865 (2005).
    49. T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115-130 (2000).
    50. C. D. Geddes and J. R. Lakowicz, “Metal-enhanced fluorescence,” J. Fluor. 12, 121-129 (2002).
    51. J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298, 1-24 (2001).
    52. E. Fort and S. Gresillon, “Surface enhanced fluorescence,” J. Phys. D: Appl. Phys. 41, 1-31 (2008).
    53. R. Y. He, G. L. Chang, H. L. Wu, C. H. Lin, K. C. Chiu, Y. D. Su, and S.-J. Chen, “Enhanced live cell membrane imaging using surface plasmon-enhanced total internal reflection fluorescence microscopy,” Opt. Express 14, 9307-9316 (2006).
    54. H. Kano and S. Kawata, “Two-photon-excited fluorescence enhanced by a surface plasmon,” Opt. Lett. 21, 1848-1850 (1996).
    55. W. Wenseleers, F. Stellacci, T. M. Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters,” J. Phys. Chem. B 106, 6853-6863 (2002).
    56. I. Gryczynski, J. Malicka, J. R. Lakowicz, E. M. Goldys, N. Calander, and Z. Gryczynski, “Directional two-photon induced surface plasmon-coupled emission,” Thin Solid Films 491, 173-176 (2005).
    57. C. Anceau, S. Brasselet, J. Zyss, and P. Gadenne, “Local second-harmonic generation enhancement on gold nanostructures probed by two-photon microscopy,” Opt. Lett. 28, 713-715 (2003).
    58. R. H. Ritchie, “Plasma Losses by Fast Electrons in Thin Films,” Phys. Rev. 106, 874–881 (1957).
    59. P. Hariharan, B. F. Oreb, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26, 2504-2505 (1987).
    60. E. Kretschman and H. Z. Raether, “Radiative Decay of Non Radiative Surface Plasmons Excited by Light,” Naturforsch. Part A 23, 2135 (1968).
    61. B. Rothenhausler and W. Knoll, “Surface-plasmon microscopy,” Nat. 332, 615-617 (1988).
    62. K. Johansen, “Imaging SPR Apparatus,” U.S. patent 6862094 (2005).
    63. J. Shumaker-Parry and C. T. Campbell, “Quantitative Methods for Spatially-Resolved Adsorption / Desorption Measurements in Real Time by SPR Microscopy,” Anal. Chem. 76, 907-917 (2004).
    64. Y. D. Su, S. J. Chen, and T. L. Yeh, “Common-path phase-shift interferometry surface plasmon resonance imaging system,” Opt. Lett. 30, 1488-1490 (2005).
    65. B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical
    aperture microscope objective,” Anal. Chem. 79, 2979-2983 (2007).
    66. C. E. H. Berger, R. P. H. Kooyman, and J. Greve, “Resolution in Surface Plasmon Microscopy,” Rev. Sci. Instrum. 65, 2829-2836 (1994).
    67. K. Suzuki, H. Kusumoto, Y. Deyashiki, J. Nishioka, I. Maruyamal, M. Zushi, S. Kawahara, G. Honda, S. Yamamoto, and S. Horiguchi, “Structure and expression of human thrombomodulin, a thrombin receptor on endothelium acting as a cofactor for protein C activation,” EMBO J. 6, 1891-1897 (1987).
    68. Q. Hong, L. J. Hsu, L. Schultz, N. Pratt, J. Mattison, and N. S. Chang, “Zfra affects TNF-mediated cell death by interacting with death domain protein TRADD and negatively regulates the activation of NF-κB, JNK1, p53 and WOX1 during stress response,” BMC Mol. Bio. 8, 50 (2007).
    69. R. M. Fulbright and D. Axelrod, “Dynamics of nonspecific adsorption of insulin to erythrocyte membranes,” J. Fluor. 3, 1-16 (1993).
    70. N. S. Chang, L. J. Hsu, Y. S. Lin, F. J. Lai, and H. M. Sheu, “WW domain-containing oxidoreductase: a candidate tumor suppressor,” Trends Mol. Med. 13, 12-22 (2007).
    71. R. I. Aqeilan, F. Trapasso, S. Hussain, S. Costinean, D. Marshall, and Y. Pekarsky, “Targeted deletion of Wwox reveals a tumor suppressor function,” Proc. Natl. Acad. Sci. 104, 3949-3954 (2007).
    72. N. S. Chang, N. Pratt, J. Heath, L. Schultz, D. Sleve, and G. B. Carey, “Hyaluronidase induction of a WW domain-containing oxidoreductase that enhances tumor necrosis factor cytotoxicity,” J. Biol. Chem. 276, 3361-3370 (2001).
    73. A. K. Bednarek, C. L. Keck-Waggoner, R. L. Daniel, K. J. Laflin, P. L. Bergsagel, and K. Kiguchi, “WWOX, the FRA16D gene, behaves as a suppressor of tumor growth,” Cancer Res. 61, 8068-8073 (2001).
    74. A. Watanabe, Y. Hippo, H. Taniguchi, H. Iwanari, M. Yashiro, and K. Hirakawa, “An opposing view on WWOX protein function as a tumor suppressor,” Cancer Res. 63, 8629-8633 (2003).
    75. N. S. Chang, J. Doherty, A. Ensign, J. Lewis, J. Heath, and L. Schultz, “Molecular mechanisms underlying WOX1 activation during apoptotic and stress responses,” Biochem. Pharmacol. 66, 1347-1354 (2003).
    76. N. S. Chang, J. Doherty, A. Ensign, L. Schultz, L. J. Hsu, and Q. Hong, “WOX1 is essential for tumor necrosis factor-, UV light-, staurosporine-, and p53-mediated cell death, and its tyrosine 33-phosphorylated form binds and stabilizes serine 46-phosphorylated p53,” J. Biol. Chem. 280, 43100-43108 (2005).
    77. N. S. Chang, L. Schultz, L. J. Hsu, J. Lewis, M. Su, and C. I. Sze, “17beta-Estradiol upregulates and activates WOX1/WWOXv1 and WOX2/WWOXv2 in vitro: potential role in cancerous progression of breast and prostate to a premetastatic state in vivo,” Oncogene 24, 714-723 (2005).
    78. R. I. Aqeilan, Y. Pekarsky, J. J. Herrero, A. Palamarchuk, J. Letofsky, and T. Druck, “Functional association between Wwox tumor suppressor protein and p73, a p53 homolog,” Proc. Natl. Acad. Sci. 101, 4401-4406 (2004).
    79. Q. Hong, L. J. Hsu, L. Schultz, N. Pratt, J. Mattison, and N. S. Chang, “Zfra affects TNF-mediated cell death by interacting with death domain protein TRADD and negatively regulates the activation of NF-kappaB, JNK1, p53 and WOX1 during stress response,” BMC. Mol. Biol. 8, 50 (2007).
    80. Q. Hong, C. I. Sze, S. R. Lin, M. H. Lee, R. Y. He, L. Schultz, J. Y. Chang, S. J. Chen, R. J. Boackle, L. J. Hsu, and N. S. Chang, “Complement C1q Activates Tumor Suppressor WWOX to Induce Apoptosis in Prostate Cancer Cells,” PLoS ONE 4, e5755 (2009).
    81. J. T. Groves, R. Parthasarathy, and M. B. Forstner, “Fluorescence imaging of membrane dynamics,” Annu. Rev. Biomed. Eng. 10, 311-338 (2008).
    82. R. Y. He, Y. D. Su, K. C. Cho, C. Y. Lin, and N. S. Chang, “Surface plasmon enhanced two-photon fluorescence microscopy for live cell membrane imaging,” Opt. Express 17, 5987-5997 (2009).
    83. L. J. Hsu, L. Schultz, Q. Hong, K. Van Moer, and J. Heath, “Transforming growth factor beta 1 signaling via interaction with cell surface Hyal-2 and recruitment of WWOX/WOX1,” J. Biol. Chem. 284, 16049-16059 (2009).
    84. S. Ekgasit, F. Yu, and W. Knoll, “Displacement of molecules near a metal surface as seen by an SPR-SPFS biosensor,” Langmuir 21, 4077-4082 (2005).
    85. K. G. Sullivan and D. G. Hall, “Enhancement and inhibition of electromagnetic radiation in plane-layered media. II. Enhanced fluorescence in optical waveguide sensors,” J. Opt. Soc. Am. B 14, 1160-1166 (1997).
    86. B. R. Masters, P. T. C. So, C. Buehler, N. Barry, J. D. Sutin, W. W. Mantulin, and E. Gratton, “Mitigating thermal mechanical damage potential during two-photon dermal imaging,” J. Biomed. Opt. 9, 1265-1270 (2004).
    87. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23, 217-228 (2008).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE