簡易檢索 / 詳目顯示

研究生: 李虹霖
Lee, Hong-Lin
論文名稱: 磁性層與鉑多層膜自旋霍爾磁阻之研究
Study of Spin Hall Magnetoresistance of Magnetic and Platinum Multlayer
指導教授: 黃榮俊
Huang, J.C.A.
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 50
中文關鍵詞: 自旋霍爾效應自旋霍爾磁阻
外文關鍵詞: Spin Hall Magnetoresistance(SMR), Spin Hall Effect(SHE), Inverse Spin Hall Effect(ISHE)
相關次數: 點閱:104下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自旋霍爾效應(SHE)與反自旋霍爾效應(ISHE)同時作用造成磁阻的改變,所以稱之為自旋霍爾磁阻(SMR)。本研究中,希望透過鉑(Pt)與鎳鋅鐵氧(NZFO)的雙層結構得到室溫下,電流轉換為自旋流之比例自旋霍爾角spin hall angle θ_SH;以及鉑之自旋擴散長度 spin diffusion length λ_Pt。再利用外加一層磁性金屬,提升整體MR變化率。

    The Spin Hall Magnetoresistance (SMR) effect is come from the spin hall effect (SHE) and inverse spin hall effect (ISHE), observed by Nakayama et al. In this work, we studied angular dependent MR in Pt/NZFO, CoFe/Pt and CoFe/Pt/NZFO multilayer systems. Based on field dependent and angular dependent magnetoresistance results, SMR exists in all multilayer system. Using the SMR theory to analyze our data, the spin hall angle and spin diffusion length of platinum can be obtained. Additionally, the SMR ratio of trilayer structure is much larger than both Pt/NZFO and CoFe/Pt bilayer systems. This enhancement of trilayer structure is significant success for spintronics devices.

    摘要 I Abstract II 目錄 IX 圖目錄 XII 表目錄 XV 第一章 緒論 1 1-1前言 1 1-2 文獻回顧 1 1-3 研究動機 8 第二章 相關理論基礎介紹 10 2-1 Ni0.3Zn0.7Fe2O4簡介 10 2-2 磁阻(Magnetoresistance , MR) 11 2-3 磁阻的種類 11 2-3-1常磁阻(Ordinary Magnetoresistance , OMR) 11 2-3-2巨磁阻(Giant Magnetoresistance , GMR) 12 2-3-3異向磁阻(Anisotropic Magnetoresistance , AMR) 12 2-3-4超巨磁阻(Colossal Magnetoresistance , CMR) 12 2-3-5穿隧磁阻(Tunneling Magnetoresistance , TMR) 12 2-3-6自旋霍爾磁阻(Spin-Hall Magnetoresistance , SMR) 12 2-4霍爾效應 (Hall Effect, HE) 13 2-5異常霍爾效應(Anomalous Hall Effect, AHE) 14 2-6 自旋霍爾效應(Spin Hall Effect, SHE) 14 2-7 反自旋霍爾效應(Invers Spin Hall Effect, ISHE) 14 第三章 儀器介紹與實驗步驟 16 3-1 脈衝雷射沉積儀(Pulsed Laser Deposition , PLD) 16 3-1-1 PLD簡介 16 3-1-2 脈衝雷射 17 3-2 靶材製作 18 3-2-1查詢各元素原子量 18 3-2-2粉末配置 18 3-3-3調配PVA溶液 18 3-3-4靶材磨製 19 3-3-5壓製靶材 19 3-3-6燒結靶材 19 3-3 反射高能電子繞射儀 (Reflection High Energy Electron Diffraction , RHEED) 20 3-4 原子力顯微鏡(Atomic Force Microscopy , AFM) 22 3-5 X-Ray 薄膜繞射儀 23 3-5-1 X-Ray Diffraction, XRD 23 3-5-2 X-Ray Reflectometry, XRR 23 3-6 超導量子干涉儀(Superconducting Quantum Interference Device Vibrating Sample Magnetometer, SQUID-VSM) 25 3-7 旋轉裝置 (Rotation System) 26 3-8 實驗步驟 28 3-8-1 樣品成長 28 3-8-1-1 基板處理: 28 3-8-1-2 KrF Laser 預熱 28 3-8-1-3 Bilayer Sample 成長 28 第四章 實驗結果與討論 30 4-1 Ni0.3Zn0.7Fe2O4 30 4-1-1 成長參數 30 4-2 重金屬(Heavy metal) Pt 33 4-3 磁性金屬CoFe 34 4-4磁阻量測 (MR measurement) 34 4-4-1 Field dependence 35 4-4-2 Current dependence 38 4-4-3 SMR equation fitting 38 4-5 Angle-dependence 40 4-5-1 Pt/NZFO/Sapphire (0001) 40 4-5-2 CoFe/Pt/NZFO/Sapphire(0001) 43 4-5-3 CoFe/Pt/Sapphire(0001) 45 4-5-4 CoFe/Sapphire(0001) 46 第五章 結論 47 參考文獻 48

    [01] Baibich, M. N., Broto, J. M., Fert, A., Van Dau, F. N., Petroff, F., Etienne, P., ... & Chazelas, J. (1988). Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices. Physical review letters, 61(21), 2472.
    [02] Binasch, G., Grünberg, P., Saurenbach, F., & Zinn, W. (1989). Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Physical review B, 39(7), 4828.
    [03] Christenson, Ï. J. (1970). POSSIBILITY OF ORIENTING ELECTRON SPINS WITH CURRENT. Phys. Rev. Lett, 25, 3l6.
    [04] Dyakonov, M. I., & Perel, V. I. (1971). Current-induced spin orientation of electrons in semiconductors. Physics Letters A, 35(6), 459-460.
    [05] Murakami, S., Nagaosa, N., & Zhang, S. C. (2003). Dissipationless quantum spin current at room temperature. Science, 301(5638), 1348-1351.
    [06] Sinova, J., Culcer, D., Niu, Q., Sinitsyn, N. A., Jungwirth, T., & MacDonald, A. H. (2004). Universal intrinsic spin Hall effect. Physical Review Letters, 92(12), 126603.
    [07] Nakayama, H., Althammer, M., Chen, Y. T., Uchida, K., Kajiwara, Y., Kikuchi, D., ... & Gross, R. (2013). Spin Hall magnetoresistance induced by a nonequilibrium proximity effect. Physical review letters, 110(20), 206601.
    [08] Isasa, M., Bedoya-Pinto, A., Vélez, S., Golmar, F., Sánchez, F., Hueso, L. E., ... & Casanova, F. (2014). Spin Hall magnetoresistance at Pt/CoFe2O4 interfaces and texture effects. Applied Physics Letters, 105(14), 142402.
    [09] Ding, Z., Chen, B. L., Liang, J. H., Zhu, J., Li, J. X., & Wu, Y. Z. (2014). Spin Hall magnetoresistance in Pt/Fe 3 O 4 thin films at room temperature. Physical Review B, 90(13), 134424.
    [10] Kim, J., Sheng, P., Takahashi, S., Mitani, S., & Hayashi, M. (2016). Spin Hall magnetoresistance in metallic bilayers. Physical review letters, 116(9), 097201.
    [11] Pardavi-Horvath, M., Cziraki, A., Fellegvari, I., Vertesy, G., Vandlik, J., & Keszei, B. (1984). Origin of coercivity of Ca-Ge substituted epitaxial YIG crystals. IEEE Transactions on Magnetics, 20(5), 1123-1125.
    [12] Rastogi, A. C., Moorthy, V. N., & Dhara, S. (2001). Cobaltous oxide infiltrated yttrium iron garnet thin films as high-coercivity media for data storage. Applied Physics Letters, 78.
    [13] Mukherjee, D., Hordagoda, M., Hyde, R., Bingham, N., Srikanth, H., Witanachchi, S., & Mukherjee, P. (2013). Nanocolumnar interfaces and enhanced magnetic coercivity in preferentially oriented cobalt ferrite thin films grown using oblique-angle pulsed laser deposition. ACS applied materials & interfaces, 5(15), 7450-7457.
    [14] Quickel, T. E., Le, V. H., Brezesinski, T., & Tolbert, S. H. (2010). On the correlation between nanoscale structure and magnetic properties in ordered mesoporous cobalt ferrite (CoFe2O4) thin films. Nano letters, 10(8), 2982-2988.
    [15] Zhang, Y. Q., Fu, H. R., Sun, N. Y., Che, W. R., Ding, D., Qin, J., ... & Zhu, Z. G. (2016). Spin Hall magnetoresistance in an ultrathin Co 2 FeAl system.Journal of Magnetism and Magnetic Materials, 411, 103-107.
    [16]林蔚叡,國立成功大學材料科學及工程學系博士論文(2014)
    [17] Huang, S. Y., Fan, X., Qu, D., Chen, Y. P., Wang, W. G., Wu, J., ... & Chien, C. L. (2012). Transport magnetic proximity effects in platinum. Physical review letters, 109(10), 107204.
    [18] Althammer, M., Meyer, S., Nakayama, H., Schreier, M., Altmannshofer, S., Weiler, M., ... & Meier, D. (2013). Quantitative study of the spin Hall magnetoresistance in ferromagnetic insulator/normal metal hybrids. Physical Review B, 87(22), 224401.
    [19] Avci, C. O., Garello, K., Ghosh, A., Gabureac, M., Alvarado, S. F., & Gambardella, P. (2015). Unidirectional spin Hall magnetoresistance in ferromagnet/normal metal bilayers. Nature Physics, 11(7), 570-575.

    下載圖示 校內:立即公開
    校外:2021-08-22公開
    QR CODE