| 研究生: |
李虹霖 Lee, Hong-Lin |
|---|---|
| 論文名稱: |
磁性層與鉑多層膜自旋霍爾磁阻之研究 Study of Spin Hall Magnetoresistance of Magnetic and Platinum Multlayer |
| 指導教授: |
黃榮俊
Huang, J.C.A. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 自旋霍爾效應 、自旋霍爾磁阻 |
| 外文關鍵詞: | Spin Hall Magnetoresistance(SMR), Spin Hall Effect(SHE), Inverse Spin Hall Effect(ISHE) |
| 相關次數: | 點閱:104 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自旋霍爾效應(SHE)與反自旋霍爾效應(ISHE)同時作用造成磁阻的改變,所以稱之為自旋霍爾磁阻(SMR)。本研究中,希望透過鉑(Pt)與鎳鋅鐵氧(NZFO)的雙層結構得到室溫下,電流轉換為自旋流之比例自旋霍爾角spin hall angle θ_SH;以及鉑之自旋擴散長度 spin diffusion length λ_Pt。再利用外加一層磁性金屬,提升整體MR變化率。
The Spin Hall Magnetoresistance (SMR) effect is come from the spin hall effect (SHE) and inverse spin hall effect (ISHE), observed by Nakayama et al. In this work, we studied angular dependent MR in Pt/NZFO, CoFe/Pt and CoFe/Pt/NZFO multilayer systems. Based on field dependent and angular dependent magnetoresistance results, SMR exists in all multilayer system. Using the SMR theory to analyze our data, the spin hall angle and spin diffusion length of platinum can be obtained. Additionally, the SMR ratio of trilayer structure is much larger than both Pt/NZFO and CoFe/Pt bilayer systems. This enhancement of trilayer structure is significant success for spintronics devices.
[01] Baibich, M. N., Broto, J. M., Fert, A., Van Dau, F. N., Petroff, F., Etienne, P., ... & Chazelas, J. (1988). Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices. Physical review letters, 61(21), 2472.
[02] Binasch, G., Grünberg, P., Saurenbach, F., & Zinn, W. (1989). Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Physical review B, 39(7), 4828.
[03] Christenson, Ï. J. (1970). POSSIBILITY OF ORIENTING ELECTRON SPINS WITH CURRENT. Phys. Rev. Lett, 25, 3l6.
[04] Dyakonov, M. I., & Perel, V. I. (1971). Current-induced spin orientation of electrons in semiconductors. Physics Letters A, 35(6), 459-460.
[05] Murakami, S., Nagaosa, N., & Zhang, S. C. (2003). Dissipationless quantum spin current at room temperature. Science, 301(5638), 1348-1351.
[06] Sinova, J., Culcer, D., Niu, Q., Sinitsyn, N. A., Jungwirth, T., & MacDonald, A. H. (2004). Universal intrinsic spin Hall effect. Physical Review Letters, 92(12), 126603.
[07] Nakayama, H., Althammer, M., Chen, Y. T., Uchida, K., Kajiwara, Y., Kikuchi, D., ... & Gross, R. (2013). Spin Hall magnetoresistance induced by a nonequilibrium proximity effect. Physical review letters, 110(20), 206601.
[08] Isasa, M., Bedoya-Pinto, A., Vélez, S., Golmar, F., Sánchez, F., Hueso, L. E., ... & Casanova, F. (2014). Spin Hall magnetoresistance at Pt/CoFe2O4 interfaces and texture effects. Applied Physics Letters, 105(14), 142402.
[09] Ding, Z., Chen, B. L., Liang, J. H., Zhu, J., Li, J. X., & Wu, Y. Z. (2014). Spin Hall magnetoresistance in Pt/Fe 3 O 4 thin films at room temperature. Physical Review B, 90(13), 134424.
[10] Kim, J., Sheng, P., Takahashi, S., Mitani, S., & Hayashi, M. (2016). Spin Hall magnetoresistance in metallic bilayers. Physical review letters, 116(9), 097201.
[11] Pardavi-Horvath, M., Cziraki, A., Fellegvari, I., Vertesy, G., Vandlik, J., & Keszei, B. (1984). Origin of coercivity of Ca-Ge substituted epitaxial YIG crystals. IEEE Transactions on Magnetics, 20(5), 1123-1125.
[12] Rastogi, A. C., Moorthy, V. N., & Dhara, S. (2001). Cobaltous oxide infiltrated yttrium iron garnet thin films as high-coercivity media for data storage. Applied Physics Letters, 78.
[13] Mukherjee, D., Hordagoda, M., Hyde, R., Bingham, N., Srikanth, H., Witanachchi, S., & Mukherjee, P. (2013). Nanocolumnar interfaces and enhanced magnetic coercivity in preferentially oriented cobalt ferrite thin films grown using oblique-angle pulsed laser deposition. ACS applied materials & interfaces, 5(15), 7450-7457.
[14] Quickel, T. E., Le, V. H., Brezesinski, T., & Tolbert, S. H. (2010). On the correlation between nanoscale structure and magnetic properties in ordered mesoporous cobalt ferrite (CoFe2O4) thin films. Nano letters, 10(8), 2982-2988.
[15] Zhang, Y. Q., Fu, H. R., Sun, N. Y., Che, W. R., Ding, D., Qin, J., ... & Zhu, Z. G. (2016). Spin Hall magnetoresistance in an ultrathin Co 2 FeAl system.Journal of Magnetism and Magnetic Materials, 411, 103-107.
[16]林蔚叡,國立成功大學材料科學及工程學系博士論文(2014)
[17] Huang, S. Y., Fan, X., Qu, D., Chen, Y. P., Wang, W. G., Wu, J., ... & Chien, C. L. (2012). Transport magnetic proximity effects in platinum. Physical review letters, 109(10), 107204.
[18] Althammer, M., Meyer, S., Nakayama, H., Schreier, M., Altmannshofer, S., Weiler, M., ... & Meier, D. (2013). Quantitative study of the spin Hall magnetoresistance in ferromagnetic insulator/normal metal hybrids. Physical Review B, 87(22), 224401.
[19] Avci, C. O., Garello, K., Ghosh, A., Gabureac, M., Alvarado, S. F., & Gambardella, P. (2015). Unidirectional spin Hall magnetoresistance in ferromagnet/normal metal bilayers. Nature Physics, 11(7), 570-575.