| 研究生: |
蔡江南 Cai, Jiang-Nan |
|---|---|
| 論文名稱: |
在高溫高壓的水蒸汽中合成類鑽石 Synthesis of Diamond-Like Carbon in High Temperature and High pressure Vapor water |
| 指導教授: |
黃正雄
Huang, Jenn-Shyong 邱政勳 Chiou, Jenq-Shing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系碩士在職專班 Department of Mechanical Engineering (on the job class) |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 拉曼 、類鑽石 |
| 外文關鍵詞: | raman, dlc |
| 相關次數: | 點閱:82 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是利用超臨界水所具有的強氧化還原能力以及水在高溫高壓下對四氯化碳溶解度的增加,將在於室溫(25℃)常壓(1atm) 之下原本不溶解於水的四氯化碳溶解於超臨界水或高溫高壓的水中,並藉由水中之草酸鈉的鈉離子與四氯化碳解離出之氯離子礦化結合成無污染的氯化鈉結構,而剩餘之碳則做為合成鑽石或類鑽石結構所需之碳的來源。若此時能適當地提供一高溫高壓的反應條件,則可使碳形成鑽石或類鑽石之結構。
藉由一系列不同反應溫度與壓力的實驗過程中,尋找出在高溫高壓下或超臨界水中,利用四氯化碳解離而析出的碳來合成類鑽石結構之最佳成長條件。並藉助拉曼光譜、掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、成分分析(X-Ray)等實驗來判定所成長之產物的結構的優劣。實驗的結果得知在374℃、220atm的超臨界條件之下有相當明顯之類鑽石結構的產生。同時實驗也得到在高溫高壓下(374℃、150atm),也有類鑽石結構的生成物產生。
另外,本實驗也針對不同催化物的添加與反應時間的長短對實驗造成的影響做了一系列的實驗,並比較在不同條件下所得到的產物的性質。至於鑽石結構的產物則因容器無法承受所需之高壓,故本論文實驗結果無法產生鑽石,如何改變容器的構造或材質使其能承受形成鑽石結構所需的壓力,將為本實驗室繼續進行的研究方向。
Carbon tetrachloride is insoluble in water at room temperature and atmospheric pressure. However, its solubility increases significantly with temperature and pressure, especially when water is under supercritical condition. In this thesis, carbon tetrachloride and sodium oxalate were added to 25℃ water at atmospheric pressure in a closed container made of stainless steel. The whole system was then heated to various temperatures above 350℃ with pressure above 150atm. Under these conditions, carbon tetrachloride and sodium oxalate were dissolved in the water vapor to generate sodium and chloride ions and carbon atoms. The chloride ion combines with the sodium ion to yield sodium chloride while the carbon ions form various carbon structures such as amorphous carbon, graphite, diamond-like carbon (DLC) and diamond depending on the temperature and pressure of the system.
In this study, reactions were conducted at various temperatures and pressures to determine the most favorable conditions for synthesizing DLC and diamond. The products of each reaction were analyzed by Raman spectroscopy, X-ray diffraction, electron scanning microscopy and electron tunneling microscopy. The results showed that the best condition for synthesizing DLC is 374℃ and 150atm. When temperature was below 374℃, no DLC was found, even when the pressure was as high as 220atm. Furthermore, various reaction times and iron and sic on carbide powders as catalysts were tried in attempt to improve the synthesis of DLC or diamond, which nevertheless could not be thus improved.
In conclusion, DLC was successfully synthesized DLC using a hydrothermal approach. No diamond structure carbon was obtained by the reactions performed in this work. The containers used herein were unable to stand a pressure above 220atm, which is too low to form diamond structure. The first priority of following subsequent research at the authors’ laboratory is to design new structures and use new materials for the container, to increase its strength to enable it to tolerate higher pressures.
參考文獻
1. 黃文啟,光調制光譜及拉曼光譜研究光電材料之表面特性,國立成功大學 博士論文。
2. 談駿嵩,《科學發展》2002年11月,359期,12~17頁。
3. 戴學斌,利用拉曼散射技術研究鐵電材料之相變化、摻雜效應與薄膜之結晶化,國立成功大學 博士論文。
4. F. H. Pollak and H. Shen, in Proceeding of the Society of Photooptical Instrumentation Engineers (SPIE, Bellingham), Vol. 1037
, P 16. 。
5.E. E. Mendez, L. L. Chang, G. Landgren, R. Ludeke, L. Esaki and F. H. Pollak, Phys. Rev. Lett., 46, 1230 (1981).。
6.M. Erman, J. B. Theetan, P. Frijlink, S. Gaillard, F. J. Hia and C. Alibert, J. Appl. Phys., 56, 3214 (1984).。
7.C. Alibert, S. Gaillard, J. A. Brum, G. Bastard, P. Frijlink and M. Erman, Solid state Commum. 53, 457 (1985).。
8.K. Capuder, P. E. Norris, H. Shen, Z. Hang and F. H. Pollak, J. Electron. Mater. 19, 295 (1990).。
9. 李明知“拉曼散射及其應用簡介”科儀新知,14卷五期,82.4
10.李匡邦“光譜化學分析”國立編譯館,86.9.。
11.N.B.Colthug, L.H.Daly, and S.E.Wiberley, Introduction to Infrared and Raman Spectroscopy, Academic Press, Boston,(1990)。
12. 簡繹驥,四氯化碳礦化機制研究,國立成功大學 博士論文。
13. Maher S. Amer, J. Busbee, Steven R. Leclair, John F. Maguire, J. Johns and A.Voevodin. J. Raman Spectrosc.30, 947-950(1990)。
14. M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. L. Spain and H. A. Goldberg. Graphite Fibers and Filaments, edited by M. Cardona, Springer-Verlag, Berlin(1988)。
15. M. Endo, T. Koyama and Hishiyama. J. J. Appl. Phys. 15, 2073(1976)。
16. Reimer, Transmission Electron Microscopy, 4th Edition, Springer-Verlag.
17.汪建民,材料分析,中國材料科學學會。
18. Yury G. Gogotsi, Per Kofstad, Masahiro Yoshimura, Klaus G. Nickel, Diamond and Related Materials 5(1996) 151-162。
19. Yury G. Gogotsi, Klaus G. Nickel and Per Kofstad, J.Mater.Chem.(1995) 2313-2314。
20. Rustum Roy, D. Ravichandran, A. Badzian, E. Brwval, Diamond and Related Materials 5(1996) 973-976。
21. Xing-Zhong Zhao, Rustum Roy, Kuruvilla A. Cherian and Andrzej Badzian, Nature Vol. 385, 6 February,1997。