| 研究生: |
王瑋祥 Wang, Wei-Shyang |
|---|---|
| 論文名稱: |
使用非侵犯性活體照影評估介白素八調控子控制之溶瘤腺病毒在原位肺腺癌之療效 Evaluation of the therapeutic effects of interleukin- 8-dependent oncolytic adenovirus on orthotopic lung adenocarcinoma by in vivo non-invasive imaging |
| 指導教授: |
蕭璦莉
Shiau, Ai-Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 溶瘤腺病毒 、原位肺腺癌模式 、非侵犯性活體照影 、介白素八 、非小細胞肺癌 |
| 外文關鍵詞: | in vivo non-invasive imaging, Oncolytic adenoviruse, orthotopic lung adenocarcinoma models, Non-small cell lung cancer, Interleukin-8 |
| 相關次數: | 點閱:178 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
非小細胞肺癌是最常發生的惡性腫瘤之一,約占所有肺癌的百分之八十。然大部分非小細胞肺癌的病人為晚期肺癌,而至今沒有任何較有效的治療可供選擇。因此,新療法的研究是當前迫切需要的。而溶瘤腺病毒(oncolytic virus)正是目前針對許多癌症脫穎而出的嶄新治療藥物。介白素八(interleukin-8, IL-8)現今被認為是一種在許多癌症中(包括非小細胞肺癌)由腫瘤細胞分泌並能作用於該腫瘤及周遭細胞的血管新生及生長因子。此外,肺癌細胞的介白素八表現量也與血管新生、癌症進程、轉移及低存活率相關。而在腫瘤浸潤的巨噬細胞則會透過分泌的第一腫瘤壞死因子(tumor necrosis factor-α, TNF-α)及介白素一(interleukin-1, IL-1),經由NF-κB路徑增加腫瘤表現介白素八。而在腫瘤的微環境中的介白素八除了由腫瘤分泌外,巨噬細胞與基細胞(stromal cells)也參與其中。因此,在非小細胞肺癌中以介白素八調控子控制溶瘤腺病毒應可具有更佳的腫瘤專一性與溶瘤效果。現今認為介白素八調控子(promoter)上的必須最小區域包含有AP-1、NF-ΚB及C/EBP-β三個主要的轉錄因子結合位。據此,在本研究中,我們建構了以人類介白素八調控子(-1481~+44)驅動的E1B 55kD缺失溶瘤腺病毒(Ad.WSW),並測試其在非小細胞肺癌中的療效。 我們證明相較其他癌症細胞株,介白素八調控子在人類肺腺癌A549及小鼠肺癌Lewis lung carcinoma細胞株中有較強的活性。藉此,Ad.WSW在人類及小鼠的肺癌細胞中具有毒殺作用,而且毒殺效果可進一步的藉由TNF-α所增強。同時,Ad.WSW具有選擇性在腫瘤細胞複製的能力,而不論在人類或小鼠正常細胞中皆無毒殺作用。在原位肺癌的小鼠模式中,我們利用穩定表現螢火蟲冷光的A549及Lewis lung carcinoma 細胞株及非侵犯性活體照影系統,建立了在NOD/SCID或C57BL/6小鼠活體偵測原位肺癌發展的技術。利用此技術,精確的證明Ad.WSW能有效地抑制小鼠原位肺癌的生長並延長小鼠的壽命。由以上結果結論,以介白素八調控子驅動的E1B 55kD缺失溶瘤腺病毒有潛力作為有效且安全的肺癌治療選擇。
Non-small cell lung cancer (NSCLC), which comprises 80% of all lung cancer cases, is one of the most common human malignancies. The majority of NSCLC patients have incurable advanced disease with very poor therapeutic option. Therefore, new treatment approaches are urgently needed. Oncolytic adenoviruses have emerged as novel therapeutic agents for a variety of cancers. Interleukin-8/CXCL8 (IL-8) has been shown to be an angiogenic and growth factor, either autocrine or paracrine, in several cancers, including NSCLC. Moreover, the expression level of IL-8 in lung cancer is associated with angiogenesis, tumor progression, metastasis, and poor survival. Infiltrating macrophages may up-regulate tumor IL-8 expression through the NF-κB pathway and modulation by tumor necrosis factor-α (TNF-α) and interleukin-1. In the NSCLC microenvironment, IL-8 can be secreted from tumor cells, macrophages, and stromal cells. It is, therefore, feasible to exploit IL-8 promoter to control the replication of oncolytic adenovirus aiming to achieve more tumor-targeted oncolysis for treating NSCLC. Characterization of IL-8 promoter indicated that the minimal region essential for IL-8 expression contains the binding sites of AP-1, NF-κB, and C/EBP-β (NF-IL-6). Based on these observations, in this study we constructed an E1B 55kD-deleted oncolytic adenovirus driven by the human IL-8 promoter (-1481~+44), designated Ad.WSW, and tested its oncolytic activity for the treatment of NSCLC. Ad.WSW caused cytolytic effects in murine and human lung cancer cells with high IL-8 promoter activity, which could be further enhanced by TNF-α treatment. Ad.WSW also selectively replicated in murine and human lung cancer cell lines but not in normal cells. Moreover, we used A549 and Lewis lung carcinoma cells stably expressing firefly luciferase (A549-luc and LL-luc) to establish orthotopic lung adenocarcinoma models in NOD/SCID and C57BL/6 mice, respectively, which were useful for monitoring intrapleural lung tumors by in vivo bioluminescence imaging. Using in vivo non-invasive imaging, we found Ad.WSW alone reduced tumor burdens and prolonged survival in the orthotopic A549 lung tumor model. We concluded that IL-8 promoter-driven oncolytic virus has the potential to be an effective strategy for lung cancer treatment.
Antony, V. B., Loddenkemper, R., Astoul, P., Boutin, C., Goldstraw, P., Hott, J., Rodriguez Panadero, F., and Sahn, S. A. (2001). Management of malignant pleural effusions. Eur Respir J 18, 402-419.
Baggiolini, M. (1993). Chemotactic and inflammatory cytokines--CXC and CC proteins. Adv Exp Med Biol 351, 1-11.
Baggiolini, M., Dewald, B., and Moser, B. (1994). Interleukin-8 and related chemotactic cytokines--CXC and CC chemokines. Adv Immunol 55, 97-179.
Bischoff, J. R., Kirn, D. H., Williams, A., Heise, C., Horn, S., Muna, M., Ng, L., Nye, J. A., Sampson-Johannes, A., Fattaey, A., and McCormick, F. (1996). An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274, 373-376.
Bloquel, C., Trollet, C., Pradines, E., Seguin, J., Scherman, D., and Bureau, M. F. (2006). Optical imaging of luminescence for in vivo quantification of gene electrotransfer in mouse muscle and knee. BMC Biotechnol 6, 16.
Burgos, J. S., Guzman-Sanchez, F., Sastre, I., Fillat, C., and Valdivieso, F. (2006). Non-invasive bioluminescence imaging for monitoring herpes simplex virus type 1 hematogenous infection. Microbes Infect 8, 1330-1338.
Chen, J. J., Yao, P. L., Yuan, A., Hong, T. M., Shun, C. T., Kuo, M. L., Lee, Y. C., and Yang, P. C. (2003). Up-regulation of tumor interleukin-8 expression by infiltrating macrophages: its correlation with tumor angiogenesis and patient survival in non-small cell lung cancer. Clin Cancer Res 9, 729-737.
Christensen, J. G., Vincent, P. W., Klohs, W. D., Fry, D. W., Leopold, W. R., and Elliott, W. L. (2005). Plasma vascular endothelial growth factor and interleukin-8 as biomarkers of antitumor efficacy of a prototypical erbB family tyrosine kinase inhibitor. Mol Cancer Ther 4, 938-947.
Chu, Y. W., Yang, P. C., Yang, S. C., Shyu, Y. C., Hendrix, M. J., Wu, R., and Wu, C. W. (1997). Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol 17, 353-360.
de Boer, J., van Blitterswijk, C., and Lowik, C. (2006). Bioluminescent imaging: emerging technology for non-invasive imaging of bone tissue engineering. Biomaterials 27, 1851-1858.
Fueyo, J., Gomez-Manzano, C., Alemany, R., Lee, P. S., McDonnell, T. J., Mitlianga, P., Shi, Y. X., Levin, V. A., Yung, W. K., and Kyritsis, A. P. (2000). A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 19, 2-12.
Garber, K. (2006). China approves world's first oncolytic virus therapy for cancer treatment. J Natl Cancer Inst 98, 298-300.
Gokhale, A. S., Haddad, R. I., Cavacini, L. A., Wirth, L., Weeks, L., Hallar, M., Faucher, J., and Posner, M. R. (2005). Serum concentrations of interleukin-8, vascular endothelial growth factor, and epidermal growth factor receptor in patients with squamous cell cancer of the head and neck. Oral Oncol 41, 70-76.
Gonin, P., and Gaillard, C. (2004). Gene transfer vector biodistribution: pivotal safety studies in clinical gene therapy development. Gene Ther 11 Suppl 1, S98-S108.
He, T. C., Zhou, S., da Costa, L. T., Yu, J., Kinzler, K. W., and Vogelstein, B. (1998). A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A 95, 2509-2514.
Heise, C., Sampson-Johannes, A., Williams, A., McCormick, F., Von Hoff, D. D., and Kirn, D. H. (1997). ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med 3, 639-645.
Hoffmann, E., Dittrich-Breiholz, O., Holtmann, H., and Kracht, M. (2002). Multiple control of interleukin-8 gene expression. J Leukoc Biol 72, 847-855.
Hooper, C. E., Ansorge, R. E., Browne, H. M., and Tomkins, P. (1990). CCD imaging of luciferase gene expression in single mammalian cells. J Biolumin Chemilumin 5, 123-130.
Hooper, C. E., Ansorge, R. E., and Rushbrooke, J. G. (1994). Low-light imaging technology in the life sciences. J Biolumin Chemilumin 9, 113-122.
Hsieh, J. L., Wu, C. L., Lee, C. H., and Shiau, A. L. (2003). Hepatitis B virus X protein sensitizes hepatocellular carcinoma cells to cytolysis induced by E1B-deleted adenovirus through the disruption of p53 function. Clin Cancer Res 9, 338-345.
Huang, S., Mills, L., Mian, B., Tellez, C., McCarty, M., Yang, X. D., Gudas, J. M., and Bar-Eli, M. (2002). Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma. Am J Pathol 161, 125-134.
Huang, T. G., Savontaus, M. J., Shinozaki, K., Sauter, B. V., and Woo, S. L. (2003). Telomerase-dependent oncolytic adenovirus for cancer treatment. Gene Ther 10, 1241-1247.
Ishida, A., Miyazawa, T., Miyazu, Y., Iwamoto, Y., Zaima, M., Kanoh, K., Sumiyoshi, H., and Doi, M. (2006). Intrapleural cisplatin and OK432 therapy for malignant pleural effusion caused by non-small cell lung cancer. Respirology 11, 90-97.
Kamizono, J., Nagano, S., Murofushi, Y., Komiya, S., Fujiwara, H., Matsuishi, T., and Kosai, K. (2005). Survivin-responsive conditionally replicating adenovirus exhibits cancer-specific and efficient viral replication. Cancer Res 65, 5284-5291.
Kemper, E. M., Leenders, W., Kusters, B., Lyons, S., Buckle, T., Heerschap, A., Boogerd, W., Beijnen, J. H., and van Tellingen, O. (2006). Development of luciferase tagged brain tumour models in mice for chemotherapy intervention studies. Eur J Cancer 42, 3294-3303.
Kunsch, C., Lang, R. K., Rosen, C. A., and Shannon, M. F. (1994). Synergistic transcriptional activation of the IL-8 gene by NF-kappa B p65 (RelA) and NF-IL-6. J Immunol 153, 153-164.
Majhen, D., and Ambriovic-Ristov, A. (2006). Adenoviral vectors--how to use them in cancer gene therapy? Virus Res 119, 121-133.
Malo, M. S., Abedrapo, M., Chen, A., Mozumder, M., Pushpakaran, P., Alkhoury, F., Zhang, W., Fleming, E., and Hodin, R. A. (2003). Improved eukaryotic promoter-detection vector carrying two luciferase reporter genes. Biotechniques 35, 1150-1152, 1154.
Masood, R., Cai, J., Tulpule, A., Zheng, T., Hamilton, A., Sharma, S., Espina, B. M., Smith, D. L., and Gill, P. S. (2001). Interleukin 8 is an autocrine growth factor and a surrogate marker for Kaposi's sarcoma. Clin Cancer Res 7, 2693-2702.
Matsusaka, T., Fujikawa, K., Nishio, Y., Mukaida, N., Matsushima, K., Kishimoto, T., and Akira, S. (1993). Transcription factors NF-IL6 and NF-kappa B synergistically activate transcription of the inflammatory cytokines, interleukin 6 and interleukin 8. Proc Natl Acad Sci U S A 90, 10193-10197.
Mian, B. M., Dinney, C. P., Bermejo, C. E., Sweeney, P., Tellez, C., Yang, X. D., Gudas, J. M., McConkey, D. J., and Bar-Eli, M. (2003). Fully human anti-interleukin 8 antibody inhibits tumor growth in orthotopic bladder cancer xenografts via down-regulation of matrix metalloproteases and nuclear factor-kappaB. Clin Cancer Res 9, 3167-3175.
Mizuno, K., Sone, S., Orino, E., Mukaida, N., Matsushima, K., and Ogura, T. (1994). Spontaneous production of interleukin-8 by human lung cancer cells and its augmentation by tumor necrosis factor alpha and interleukin-1 at protein and mRNA levels. Oncology 51, 467-471.
Mukaida, N., Shiroo, M., and Matsushima, K. (1989). Genomic structure of the human monocyte-derived neutrophil chemotactic factor IL-8. J Immunol 143, 1366-1371.
Nemunaitis, J., and Edelman, J. (2002). Selectively replicating viral vectors. Cancer Gene Ther 9, 987-1000.
Onn, A., Isobe, T., Itasaka, S., Wu, W., O'Reilly, M. S., Ki Hong, W., Fidler, I. J., and Herbst, R. S. (2003). Development of an orthotopic model to study the biology and therapy of primary human lung cancer in nude mice. Clin Cancer Res 9, 5532-5539.
Ren, S., Terman, D. S., Bohach, G., Silvers, A., Hansen, C., Colt, H., and Sahn, S. A. (2004). Intrapleural staphylococcal superantigen induces resolution of malignant pleural effusions and a survival benefit in non-small cell lung cancer. Chest 126, 1529-1539.
Ren, Y., Poon, R. T., Tsui, H. T., Chen, W. H., Li, Z., Lau, C., Yu, W. C., and Fan, S. T. (2003). Interleukin-8 serum levels in patients with hepatocellular carcinoma: correlations with clinicopathological features and prognosis. Clin Cancer Res 9, 5996-6001.
Rosso, R., Rimoldi, R., Salvati, F., De Palma, M., Cinquegrana, A., Nicolo, G., Ardizzoni, A., Fusco, U., Capaccio, A., Centofanti, R., and et al. (1988). Intrapleural natural beta interferon in the treatment of malignant pleural effusions. Oncology 45, 253-256.
Sarkioja, M., Kanerva, A., Salo, J., Kangasniemi, L., Eriksson, M., Raki, M., Ranki, T., Hakkarainen, T., and Hemminki, A. (2006). Noninvasive imaging for evaluation of the systemic delivery of capsid-modified adenoviruses in an orthotopic model of advanced lung cancer. Cancer 107, 1578-1588.
Sasaki, T., Yasuda, H., Nakayama, K., Asada, M., Okinaga, S., Suzuki, T., Yoshida, M., Yamanda, S., and Yamaya, M. (2006). Pleurodesis with carboplatin in elderly patients with malignant pleural effusion and lung adenocarcinoma. J Am Geriatr Soc 54, 722-723.
Seto, T., Ushijima, S., Yamamoto, H., Ito, K., Araki, J., Inoue, Y., Semba, H., and Ichinose, Y. (2006). Intrapleural hypotonic cisplatin treatment for malignant pleural effusion in 80 patients with non-small-cell lung cancer: a multi-institutional phase II trial. Br J Cancer 95, 717-721.
Shellenberger, T. D., Mazumdar, A., Henderson, Y., Briggs, K., Wang, M., Chattopadhyay, C., Jayakumar, A., Frederick, M., and Clayman, G. L. (2005). Headpin: a serpin with endogenous and exogenous suppression of angiogenesis. Cancer Res 65, 11501-11509.
Singh, R. K., and Varney, M. L. (2000). IL-8 expression in malignant melanoma: implications in growth and metastasis. Histol Histopathol 15, 843-849.
St John, M. A., Li, Y., Zhou, X., Denny, P., Ho, C. M., Montemagno, C., Shi, W., Qi, F., Wu, B., Sinha, U., et al. (2004). Interleukin 6 and interleukin 8 as potential biomarkers for oral cavity and oropharyngeal squamous cell carcinoma. Arch Otolaryngol Head Neck Surg 130, 929-935.
Su, W. C., Lai, W. W., Chen, H. H., Hsiue, T. R., Chen, C. W., Huang, W. T., Chen, T. Y., Tsao, C. J., and Wang, N. S. (2003). Combined intrapleural and intravenous chemotherapy, and pulmonary irradiation, for treatment of patients with lung cancer presenting with malignant pleural effusion. A pilot study. Oncology 64, 18-24.
Suzuki, A., Takahashi, T., Okuno, Y., Nakamura, K., Tashiro, H., Fukumoto, M., Konaka, Y., and Imura, H. (1991). Analysis of abnormal expression of g-csf gene in a novel tumor cell line (KHC 287) elaborating G-CSF, IL-1 and IL-6 with co-amplification of c-myc and c-ki-ras. Int J Cancer 48, 428-433.
Torisu, H., Ono, M., Kiryu, H., Furue, M., Ohmoto, Y., Nakayama, J., Nishioka, Y., Sone, S., and Kuwano, M. (2000). Macrophage infiltration correlates with tumor stage and angiogenesis in human malignant melanoma: possible involvement of TNFalpha and IL-1alpha. Int J Cancer 85, 182-188.
Wu, G. D., Lai, E. J., Huang, N., and Wen, X. (1997). Oct-1 and CCAAT/enhancer-binding protein (C/EBP) bind to overlapping elements within the interleukin-8 promoter. The role of Oct-1 as a transcriptional repressor. J Biol Chem 272, 2396-2403.
Xie, K. (2001). Interleukin-8 and human cancer biology. Cytokine Growth Factor Rev 12, 375-391.
Xu, L., and Fidler, I. J. (2000). Interleukin 8: an autocrine growth factor for human ovarian cancer. Oncol Res 12, 97-106.
Yamamoto, S., Deckter, L. A., Kasai, K., Chiocca, E. A., and Saeki, Y. (2006). Imaging immediate-early and strict-late promoter activity during oncolytic herpes simplex virus type 1 infection and replication in tumors. Gene Ther 13, 1731-1736.
Yang, P., Allen, M. S., Aubry, M. C., Wampfler, J. A., Marks, R. S., Edell, E. S., Thibodeau, S., Adjei, A. A., Jett, J., and Deschamps, C. (2005). Clinical features of 5,628 primary lung cancer patients: experience at Mayo Clinic from 1997 to 2003. Chest 128, 452-462.
Yao, P. L., Lin, Y. C., Wang, C. H., Huang, Y. C., Liao, W. Y., Wang, S. S., Chen, J. J., and Yang, P. C. (2005). Autocrine and paracrine regulation of interleukin-8 expression in lung cancer cells. Am J Respir Cell Mol Biol 32, 540-547.
Yatsunami, J., Tsuruta, N., Ogata, K., Wakamatsu, K., Takayama, K., Kawasaki, M., Nakanishi, Y., Hara, N., and Hayashi, S. (1997). Interleukin-8 participates in angiogenesis in non-small cell, but not small cell carcinoma of the lung. Cancer Lett 120, 101-108.
Yuan, A., Yang, P. C., Yu, C. J., Chen, W. J., Lin, F. Y., Kuo, S. H., and Luh, K. T. (2000). Interleukin-8 messenger ribonucleic acid expression correlates with tumor progression, tumor angiogenesis, patient survival, and timing of relapse in non-small-cell lung cancer. Am J Respir Crit Care Med 162, 1957-1963.
Zhu, Y. M., Webster, S. J., Flower, D., and Woll, P. J. (2004). Interleukin-8/CXCL8 is a growth factor for human lung cancer cells. Br J Cancer 91, 1970-1976.