簡易檢索 / 詳目顯示

研究生: 李盈衛
Lee, Ying-Wei
論文名稱: 不對稱噴注對雙推進劑液態火箭燃燒室流場之影響
Effects of the Asymmetric Impingement of Unlike-Doublet Injection on the Flow of a Bipropellant Liquid Rocket Combustor
指導教授: 江滄柳
Jiang, Tsung -Leo
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 144
中文關鍵詞: 雙推進劑液態火箭不對稱噴注數值模擬
外文關鍵詞: Bipropellant Liquid Rocket, Numerical Simulation, Asymmetric Impingement
相關次數: 點閱:90下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對小型雙推進劑NTO/MMH液態火箭引擎燃燒室,以數值方法模擬其燃燒流場。並探討不對稱噴注衝擊霧化產生之液膜彎曲角對小型液態火箭引擎燃燒室流場之影響。數值模擬結果發現,當NTO往燃燒室壁方向噴注,而MMH往燃燒室中心方向噴注時,噴注衝擊NTO/MMH動量比分佈會影響液膜擴散面之偏移方向與液膜呈現彎曲之形狀。當霧化擴散面中心之NTO/MMH動量比增加,霧化扇面外緣之NTO/MMH動量比減少時,液膜擴散面中心會往壁面偏移,液膜呈現向燃燒室中心彎曲之內包形狀,燃燒效率較低。但是當霧化擴散面中心之NTO/MMH動量比減少,霧化扇面外緣之NTO/MMH動量比增加時,液膜擴散面中心會往燃燒室中心偏移,液膜呈現向燃燒室壁面彎曲之外包形狀,燃燒效率較高,但容易導致燃燒室壁面局部高溫之現象。

    方格區塊結構格點(block-structured mesh)能降低中心軸附近產生之數值誤差,但是由於雙推進劑噴注之不對稱性,使得燃燒室壁面的方格格點產生數值上之不對稱性,導致燃燒室壁面的物理現象產生局部性之差異。本研究另外採取圓柱座標形態之格點做比較,軸對稱的形態相較於卡式座標有較佳之對稱性及均勻性,並能降低壁面格點不對稱性所產生之數值誤差,將可提供較為準確之結果。然而,增加側面擴散角會使霧化液滴產生相互碰撞混合,甚至有穿透式霧化的現象發生,對於燃燒室整體的液滴混合及燃燒效率有較佳的影響。縮小正面擴散角會增加液滴的燃燒混合反應,拉長了霧化面外圍液滴與燃燒室壁之間的距離,使得燃燒室前端之局部高溫的現象較不明顯,但是不同液膜彎曲模式下之偏移角使得霧化扇面外緣之液滴噴向燃燒室壁,會導致燃燒更為接近燃燒室壁面,造成燃燒室壁面後段會有較明顯的局部高溫條紋產生。

    In this thesis, the combustion flow in a small bipropellant liquid rocket combustor is numerically simulated. In the present study, how the curvature of the liquid sheet generated by the asymmetric impingement of unlike-doublet injection affects the combustion flow of a bipropellant liquid rocket engine is explored numerically. Numerical results obtained from the present study reveal that the NTO stream is injected in the direction toward the chamber wall and the MMH stream toward the center of the chamber, the distribution of the NTO/MMH momentum ratio determines the deflection angle and shape of the liquid sheet. As the central NTO/MMH momentum ratio is larger, the liquid sheet deflects from the center of the chamber toward the chamber wall, and the concave side of the liquid sheet faces the center of the chamber. Under such a circumstance, the combustion efficiency is lower. On the other hand, as the central NTO/MMH momentum ratio is smaller, the liquid sheet deflects from the chamber wall toward the chamber center, and the concave side of the liquid sheet faces the chamber wall. In this case, the combustion efficiency is relatively higher. However, it may also lead to a high temperature around the chamber wall.

    The square block-structured mesh can decrease the numerical error around the center axis. But due to the asymmetry of bipropellant injection, the square grid around the chamber wall will produce the numerical asymmetry, and cause the local differences in physical phenomenon on the chamber wall. In addition, the research adopts the grid of cylindrical coordinate which the symmetrical style of axis has a nice symmetry and uniform to compare with the grid of right triangle coordinate, and decrease the numerical error because of the asymmetry of grid on the chamber wall. This will provide more accurate result. However, to increase the sideward deviation angle will make the atomizated droplets collide with each other, mix, and even the phenomenon of penetrative atomization occur that has a nice influence in the mixture of droplets and combustion efficiency. When the front spray angle decrease, the droplets will increase the combustion mixed reaction, and expand the distance between the droplets around the liquid sheet and the chamber wall. This make the local high temperature phenomenon appear unclearly in front of the chamber wall, but in different curvature cases of liquid sheet, the deflection angle makes the droplets around the liquid sheet inject toward the chamber wall, causes the combustion toward the chamber wall nearly, and will have more clear local high temperature striation in back of the chamber wall.

    摘要 i Abstract iii 誌謝 v 目錄 vi 表目錄 viii 圖目錄 ix 符號說明 xvii 第一章 導論 1 §1-1 前言 1 §1-2 研究動機 4 §1-3 文獻回顧 6 §1-3-1自燃性推進劑燃燒模式之研究 6 §1-3-2衝擊式注油器之衝擊霧化研究 10 §1-3-3 CFD技術在雙推進劑液態火箭引擎燃燒室分析之應用 12 第二章 數學及物理模式 16 §2-1 基本假設 16 §2-2 紊流模式 17 §2-3 邊牆函數(Wall Function) 17 §2-4 氣相流場統御方程式 17 §2-5 噴霧油滴之相關方程式 19 §2-6 雙推進劑衝擊霧化模式 21 §2-7 不對稱噴注衝擊霧化模式 22 §2-8 冷卻燃料噴注模式 23 §2-9 油滴與氣相流場的關係 24 §3-0 化學反應模式 24 §3-0-1 動態化學反應 25 §3-0-2 平衡化學反應 26 第三章 數值方法及格點系統 28 §3-1 簡介 28 §3-2 計算程序 28 §3-3 格點系統 30 第四章 結果與討論 33 §4-1 不對稱噴注模式形成之探討 35 §4-2 液膜彎曲模式對燃燒室流場之影響 37 §4-3 側面擴散角對不同液膜彎曲模式之影響 41 §4-4 格點之不對稱性對燃燒室壁溫之影響 46 §4-5 縮小正面擴散角對燃燒室效能之影響 51 第五章 結論與建議 57 參考文獻 60 自述 121 著作權聲明 122

    1. W. S. Nie and F. C. Zhuang, “Hypergolic propellant rocket engine combustion instability studies,” Journal of Propulsion Technology, Vol.21 No.4, 2000.
    2. R. N. Eulner, D. E. White and L. M. Wood, “High Speed Shadow and Schlieren Photographs of the Combustion of N2O4/50%/N2H4-50% UDMH in a Small Windowed Combustion Chamber,” 5th ICRPG Combustion Conference, PIA Publication No. 183, October 1-3, 1968.
    3. R. F. Sawyer, “The Hydrazine-Nitrogen Tetroxide Reaction, A Comparison of Experimental Observations,” 3rd Combustion Conference, CPIA Publication Np. 138 Vol 1, February 1967.
    4. T. L. Jiang, C. C. Liu, W. S. Chen, “Convective Fuel Droplet Burning Accompanied by an Oxidizer Droplet,” Combust. Sci. and Tech, 1994, Vol 97, pp. 271-301.
    5. T. L. Jiang, W. Huang, and C. C. Liu, “Experimental and Numerical Investigations of Fuel Droplet Burning Accompanied by an Oxidizer Droplet,” Journal of the Chinese Society of Mechanical Engineers, Vol.17, No.4, pp.373-385, 1996.
    6. 朱書宏, “小型液態火箭三維氣相燃燒流場之數值模擬,” 國立成功大學航空太空工程研究所碩士論文, 2002.
    7. B. J. Matthews, R. F. Wuerker and R. F. Kemp, “Holography of Injection and Combustion Phenomena,” 6th ICRPG Combustion Conference, CPIA Publication No. 192, Vol. 1, December 1969.
    8. D. D. Evans, H. B. Stanford, and R. W. Riebling, “The Effect of Injector-Element Scale on the Mixing and Combustion of Nitrogen Tetroxide-Hydrazine Propellants,” Technical Report 32-1178, Jet Propulsion Laboratory, California Institute of Technology, 1967.
    9. L. B. Zung, and J. R. White, “Combustion Process of Impinging Hypergolic Propellants,” NASA CR-1704, 1971.
    10. R. Lecourt, R. Foucaud, G. Lavergne, P. Berthoumieu, and P. Millan, “Hypergolic Propellant Burning Spray Visualization by Laser Sheet Method. Application to Droplet Size and Liquid Concentration Measurements,” Third Symposium on Experimental and Numerical Flow Visualization, 1993 ASME Winter Annual Meeting, USA, 1993.
    11. Heidmann M.F., Priem R.J., “A Study of Sprays Formed by Two Impinging Jets” NACA-TN-3835, March 1957.
    12. N. Dombrowski and P.C. Hooper, “A Study of the Sprays Formed by Impinging Jets in Laminar and turbulent Flow,” J. Fluid Mech., Vol.18, Pt.3, pp. 392-400, 1964.
    13. W. E. Anderson, H. M. Ryan, and R. J. Santoro, “Impinging Jet Injector Atomization,” Liquid Propellant Rocket Combustion Instability, AIAA, 1990.
    14. W. H. Lai, T. L. Jiang, and W. Huang, “Characteristic Study on the Like-doublet Impinging Jets Atomization,” Atomization and Sprays,vol. 9, 1999.
    15. 陳威丞, “異質噴流衝擊霧化之觀察,” 國立成功大學航空太空工程研究所碩士論文, 2001.
    16. Kihoon Jung, Youngbin Yoon, Sang-Soon Hwang, “Spray Characteristics of Impinging Jet Injectors Using Imaging Techniques,” 36th AIAA Joint Propulsion Conference Jun, AIAA, 2000.
    17. 王修哲, “同質與異質衝擊式注油器霧化特性研究,” 國立成功大學航空太空工程研究所碩士論文, 2002.
    18. 朱建儒, “異質衝擊噴流霧化與混合之研究,” 國立成功大學航空太空工程研究所碩士論文, 2003.
    19. P. Y. Liang, S. Fisher and Y. M. Chang, “Comprehensive Modeling of a Liquid Rocket Combustion Chamber,” Journal of Propulsion and Power, Vol. 2, No. 2, pp97-104, 1986.
    20. P. Y. Liang, R. J. Jensen and Y. M. Chang, “Numerical Analysis of SSME Preburner Injector Atomization and Combustion Process,” Journal of Propulsion and Power, Vol. 3, No. 6, pp.508-514, 1987.
    21. L. C. Cloutman, J. K. Dukowicz, J. D. Ramshaw and A. A. Amsden, “CONCHAS-SPRAY: A Computer Code for Reactive Flows with Fuel Sprays,” Los Alamos National Lab., Los Alamos, NM, Rept. LA-9294-MS, May 1982.
    22. H. H. Chiu, T. L. Jiang, G. F. Berry, and E. J. Croke, “Analytical Prediction of Combustion Performance Characteristic of Bipropellant Liquid Rocket Engine Combustor,” 23rd JANNAF Combustion Meeting, NASA Langley Research Center, Hampton, Virginia, October 1986.
    23. T. L. Jiang and H. H. Chiu, “Bipropellant Combustion in a Liquid Rocket Combustion Chamber,” Journal of Propulsion and Power, Vol. 8, pp. 995-1003, 1992.
    24. T. L. Jiang, “Computer Simulation System of a Liquid-propellant Rocket Combustor (III),” Defense Technology Coordination Council, Report NSC-84-2623-D-006-004, 1995.
    25. M. L. Louis and S. M. Jeng, “Bipropellant Spray Combustion Modeling in Small Rocket Engines,” AIAA/SAE/ASME/ASEE, 27th Joint Propulsion Conference, June 24-26, 1991.
    26. J. D. Naber and R. D. Reitz, “Modeling Engine Spray/Wall Impin- gement ,” SAE 880107.
    27. H. H. Chiu, T. L. Jiang, A. N. Krebsbach and K. W. Gross, “Numerical Analysis of Bipropellant Combustion in Orbital Maneuvering Vehicle Thrust Chamber,” AIAA Paper 90-0045, Jan. 1990.
    28. O. Knab, D. Preclik, D. Estublier, “Flow Field Prediction within Liquid Film Cooled Combustion Chamber of Storable Bi-propellant Rocket engines,” AIAA Paper 98-3370.
    29. G. P. Purohit, P. A. Donatelli, J. R. Ellison and V. K. Dhir, “Transient Thermal Model of a Film-Cooled Bipropellant Thruster,” AIAA Paper 2000-1072.
    30. 郭保宏, “小型液態火箭三維燃燒室流場之數值模擬,” 國立成功大學航空太空工程研究所碩士論文, 2002.
    31. 藍庭豪, “燃油噴注冷卻對雙推進劑液態火箭燃燒流場之影響,” 國立成功大學航空太空工程研究所碩士論文, 2003.
    32. A. A. Amsden, “KIVA-3: A KIVA Program with Block-Structured Mesh for Complex Geometries,” Los Alamos National Laboratory Report LA-12503-MS, 1993.
    33. T. L. Jiang, “Numerical Analyses on the Combustor Performance of Various Side-Dump Liquid-Fueled Ramjets (I),” 國推會研究計劃報告書, NSC 88-2623-D-006-011, 1999.
    34. S. Menon and W. H. Jou, “Large-Eddy Simulations of Combustion Instability in an Axisymmetric Ramjet Combustor,” Combustion Science and Technology, Vol. 75, pp. 53-72, 1991.
    35. R. H. Yen and T. H. Ko, “Effects of Side-Inlet Angle in a Three- Dimensional Side-Dump Combustor,” Journal of Propulsion and Power, Vol. 9, No. 5, 1993.
    36. D. G. Sloan, P. J. Smith and L. D. Smoot, “Modeling of Swirling in Turbulent Flow Systems,” Progress in Energy and Combustion Science, Vol. 12, pp. 163-250, 1986.
    37. A. A. Amsden, P. J. O’Rourke, and T. D. Butler, “KIVA-II: A Computer Program for Chemically Reactive Flows with Sprays,” Los Alamos National Laboratory Report LA-11560-MS, 1989.
    38. B. E. Launder and D. B. Spalding, “The Numerical Computation of Turbulent Flows,” Computer Methods in Applied Mechanics and Engineering, Vol. 3, pp. 269-289, 1974.
    39. Rotondi, R., Bella, G., Grimaldi, C., and Postrioti, L., “Atomization of High-Pressure Diesel Spray: Experimental Validation of a New Breakup Model,” SAE Technical Paper 2001-01-1070.
    40. C. W. Hirt, A. A. Amsden, and J. L. Cook, J. Comput. Phys., Vol. 14, pp. 227, 1974.
    41. W. E. Pracht, J. Comput. Phys., Vol. 17, pp.132, 1975.
    42. S. V. Patankar, “Numerical Heat Transfer and Fluid Flow,” Hemisphere, Washington, D. C., 1980.
    43. 楊睦雄及郭正山,Private communications, 2003.

    下載圖示 校內:立即公開
    校外:2004-08-19公開
    QR CODE