| 研究生: |
楊錫堯 Yang, Hsi-Yao |
|---|---|
| 論文名稱: |
四汽缸雙動式史特靈引擎之三維熱流場數值模擬 Numerical Simulation of Three-Dimensional Thermal and Flow Fields in a Four-Cylinder Double-Acting Stirling Engine |
| 指導教授: |
鄭金祥
Cheng, Chin-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 雙動式 、史特靈引擎 、熱流場 、數值模擬 、性能 |
| 外文關鍵詞: | Double-acting, Stirling engine, Thermal and flow fields:Numerical simulation:Engine performance |
| 相關次數: | 點閱:99 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係針對四汽缸雙動式史特靈引擎(Four-cylinder double-acting Stirling engine)內部之熱流場進行數值模擬與參數分析;藉由三維可移動邊界熱流模型,求解引擎內部工作流體之熱流場分佈情況,並探討引擎轉速、填充質量、加熱溫度與孔隙率對引擎性能之影響,進一步求得引擎之最佳設計。首先,利用CAD軟體CATIA建立引擎內部工作流體之流場模型,再透過ANSYS Workbench之網格模組建置網格系統,最後選用ANSYS Fluent軟體之Realizable k-ε紊流模型進行數值模擬計算。
根據模擬結果可知引擎會在特定轉速下達到最大輸出功率;而對於在不同操作條件之引擎而言,可得到引擎具有最大輸出功率之轉速亦不同。另外,增加汽缸內部填充質量或提高加熱端溫度皆可提升引擎之輸出功率、扭矩與熱效率。此外,再生通道之孔隙率亦是本研究探討參數之一;透過模擬結果可知特定孔隙率可使引擎具有最大輸出功率、扭矩與最佳熱效率。
This research is focused on numerical simulation of thermal and flow fields in a four-cylinder double-acting Stirling engine, with a three-dimensional moving boundary model. The research is aimed to study internal thermal and flow fields of the engine as well as to carry out parametric analysis of varying rotational speed, charging mass, heating temperature and porosity in order to determine best design of the engine. First of all, the engine’s working fluid model is created using the CAD software, CATIA, followed by model meshing using the mesh module in ANSYS Workbench. The numerical simulation is then conducted in ANSYS Fluent using the turbulence (Realizable k-ε) model.
Based on the simulation results, the maximum power output of the specified engine rotational speed can be obtained. Under different operating conditions, the maximum power output corresponding to the engine rotational speed can be found. Besides that, increasing charging mass in engine’s cylinder or increasing the heating temperature can improve the engine’s performance, including its power output, torque and thermal efficiency. In addition, the porosity in regenerator is also taken into account for parametric analysis. Thus, the porosity corresponding to the best performance is known.
[1]2016年能源產業技術白皮書, 經濟部能源局, 台灣, 2016.
[2]M. Abbas, B. Boumeddane, N. Said, and A. Chikouche, "Dish Stirling Technology: A 100 MW Solar Power Plant Using Hydrogen for Algeria", International Journal of Hydrogen Energy, Vol. 36, pp. 4305-4314, 2011.
[3]I. Kolin, S. Koscak-Kolin, and M. Golub, "Geothermal Electricity Production By Means of The Low Temperature Difference Stirling Engine", World Geothermal Congress, Vol. 2000, pp. 3199-3203, 2000.
[4]M. Janowski, "Alternative Ways of Utilising Geothermal Energy by Means of a Module Based on the Stirling Engine for Electricity Production", World Geothermal Congress, Australia, 2015.
[5]R. Darlington and K. Strong, Stirling and Hot Air Engines: Designing and Building Experimental Model Stirling Engines, Crowood, 2005.
[6]C. Hargreaves, The Philips Stirling Engine, Elsevier, 1991.
[7]G. Walker, R. Fauvel, R. Gustafson, and J. Van Bentham, "Stirling Engine Heat Pumps", International Journal of Refrigeration, Vol. 5, pp. 91-97, 1982.
[8]黃振軒, "分置式史特靈冷凍機之性能增進", 國立成功大學航空太空工程學系碩士論文, 2014.
[9]E. C. Whitman, "Air-Independent Propulsion: AIP Technology Creates a New Undersea Threat", Undersea Warfare, Vol. 4, 2001.
[10]C. Brett, "The 4-95 Stirling Engine for Underwater Application", International Energy Conversion Engineering Conference, Vol. 5, pp. 530-533, 1990.
[11]A. J. Organ, Thermodynamics and Gas Dynamics of the Stirling Cycle Machine, Cambridge University Press, 1992.
[12]M. J. Moran, H. N. Shapiro, D. D. Boettner, and M. B. Bailey, Principle of Engineering Thermodynamics, 7th ed. John Wiley & Sons,Inc., 2012.
[13]施長江, "史特靈引擎菱形驅動結構之機構設計與熱流分析", 大同大學機械工程學系碩士論文, 2004.
[14]楊翰勳, "熱延遲式史特靈引擎之理論分析與製作", 國立成功大學航空太空工程學系碩士論文, 2011.
[15]林昱廷, "自由活塞式史特靈引擎之動態模擬與製作", 國立成功大學航空太空工程學系碩士論文, 2011.
[16]T. Nguyen, "Numerical Simulation of Thermal and Flow Fields in a Double-Acting Alpha-Type Stirling Engine", National Cheng Kung University Department of Aeronautics & Astronautics Thesis, 2015.
[17]S. Carlqvist and Y. Gothberg, "New Concept, Hermetically Sealed 4-Cylinder, Double-Acting Stirling Engine", International Energy Conversion Engineering Conference, pp. 2265-2270, 1989.
[18]Y. X. Yu, Z. C. Yuan, J. Y. Ma, and Q. Zhu, "Numerical Simulation of a Double-Acting Stirling Engine in Adiabatic Conditions", Advanced Materials Research, Vol. 482, pp. 589-594, 2012.
[19]D. Clucas and J. Raine, "A New Wobble Drive with Particular Application in a Stirling Engine", Journal of Mechanical Engineering Science, Vol. 208, pp. 337-346, 1994.
[20]D. Clucas and J. Raine, "The WhisperGen: A Strategy for Commercial Production", International Stirling Engine Conference and Exhibition, pp. 159-168, 1997.
[21]J. L. Hess and A. M. O. Smith, "Calculation of Potential Flow About Arbitrary Bodies", Aerospace Sciences, Vol. 8, pp. 1-138, 1967.
[22]A. Fluent, ANSYS Fluent Theory Guide 15.0, 2013.
[23]N. Rajendiran, "Numerical Prediction of Thermodynamic Cycle and Thermal Efficiency of Thermal-Lag Stirling Engine", National Cheng Kung University Department of Aeronautics and Astronautics Thesis, 2017.
[24]C. H. Cheng and Y. F. Chen, "Numerical Simulation of Thermal and Flow Fields inside a 1-kW Beta-Type Stirling Engine", Applied Thermal Engineering, Vol. 121, pp. 554-561, 2017.
[25]W. M. Clearman, Measurement and Correlation of Directional Permeability and Forchheimer's Inertial Coefficient of Micro Porous Structures Used in Pulse Tube Cryocoolers, Georgia Institute of Technology, 2007.
[26]A. Boroujerdi and M. Esmaeili, "Characterization of The Frictional Losses and Heat Transfer of Oscillatory Viscous Flow Through Wire-Mesh Regenerators", Alexandria Engineering Journal, Vol. 54, pp. 787-794, 2015.
[27]E. Landrum, T. Conrad, S. Ghiaasiaan, and C. S. Kirkconnell, "Hydrodynamic Parameters of Mesh Fillers Relevant to Miniature Regenerative Cryocoolers", Cryogenics, Vol. 50, pp. 373-380, 2010.
[28]W. Jones and B. Launder, "The Prediction of Laminarization with a Two-Equation Model of Turbulence", International Journal of Heat and Mass Transfer, Vol. 15, pp. 301-314, 1972.
[29]Z. U. Warsi, "Fluid Dynamics: Theoretical and Computational Approaches", CRC press, 2005.
[30]P. A. Durbin and B. P. Reif, "Statistical Theory and Modeling for Turbulent Flows", John Wiley & Sons, 2011.
[31]R. I. Issa, "Solution of The Implicitly Discretised Fluid Flow Equations by Operator-Splitting", Journal of Computational Physics, Vol. 62, pp. 40-65, 1986.
[32]E. García-Canseco, A. Alvarez-Aguirre, and J. M. Scherpen, "Modeling for Control of a Kinematic Wobble-Yoke Stirling Engine", Renewable Energy, Vol. 75, pp. 808-817, 2015.
校內:2022-09-01公開