簡易檢索 / 詳目顯示

研究生: 王廣弘
Wang, Kuang-Hung
論文名稱: 生物可分解聚酯與晶型或非晶型高分子摻合體之結晶形態與晶板自組裝
Crystalline Morphology and Lamellae Assembly in Biodegradable Polyesters Blend with Crystalline or Amorphous Polymers
指導教授: 吳逸謨
Woo, Ea-Mor
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 85
中文關鍵詞: 聚乳酸聚乙二醇丁二酸酯雙重結晶單晶
外文關鍵詞: PLA, PESu, dual-type spherulites, single crystal
相關次數: 點閱:92下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用微分掃描熱卡計 (differential scanning calorimeter, DSC)、偏光顯微鏡 (polarized optical microscope, POM)、原子力顯微鏡 (atomic force microscope, AFM) 、穿透式電子顯微鏡 (transmission electron microscope, TEM)來探討生物可分解高分子:右旋聚乳酸 [poly(D-lactic acid), PDLA]、左旋聚乳酸 [poly(L-lactic acid), PLLA]和低分子量的聚丙二醇己二酸酯 [poly(1,3-trimethylene adipate), PTA]之兩成份摻合系統的特定比例之相行為與其特殊的雙重結晶型態;以及聚乙二醇丁二酸酯 [poly(ethylene succinate), PESu]與非結晶性高分子聚甲基丙烯酸酯 [poly(methyl acrylate), PMA]之兩成份摻合系統的相行為與其結晶型態。
    第一部份:聚丙二醇己二酸酯對右、左旋聚乳酸與其錯合物之影響:在球晶形貌、結晶成長機制之探討
    PDLA / PTA 摻合系統於 80/20、50/50比例下為具有 UCST 相行為的相容系統;並選擇在該比例下進行不同膜厚、不同結晶溫度的恆溫結晶之比較,在10 μm的膜厚下,發現兩階段成長的球晶;在 1.0 μm的膜厚下,PDLA / PTA = 50/50 產生雙重的結晶行為,並針對其特殊的雙重結晶討論其成長機制。不同膜厚試樣的熔融結晶之共同點為第一種球晶為經典的摻入 PTA 之後所表現的 PDLA 結晶;而第二種球晶係為混摻系統中未與 PTA 完全作用的 PDLA,故以其標準的負型且環帶狀的球晶生成。而在10 μm膜厚的結晶所發現的兩階段球晶成長,其機制可以由1.0 μm的膜厚的雙重結晶反向推導而得。另外,以等比例 PDLA 與 PLLA 所形成的立體錯合物 (stereo-complex)對於三成份的摻合系統 PDLA / PLLA / PTA 裡誘導生成的 homo-polymer結晶去做球晶形貌與結晶型態的探討。最後,將系統裡的 PTA 以不定形的 PMA 替換;抑或是以 PDLA 互為掌性 (chiral)異構物的 PLLA,同樣以 PTA 混摻之,比較出 PTA 對於聚乳酸特殊結晶形貌的表現。
    第二部份:聚乙二醇丁二酸酯與聚甲基丙烯酸酯摻合系統之結晶型態、晶板自組裝、相行為分析
    PESu / PMA摻合系統為具有 UCST 相行為的相容系統。選擇在完全相容的摻合比例 (5~15%的PMA) 去進行不同膜厚、恆溫結晶溫度的熔融結晶比較,可觀察到多重的結晶形貌。這是首次結晶性的 PESu 與彼此不具氫鍵作用力的不定形高分子 PMA 被發現多重的結晶行為。另外,當以熔融結晶的方式,在特定摻合濃度、超薄膜厚的結晶條件下,可得到菱形的順時針單晶成長,以利於晶板排列的討論。由清晰且明白的AFM在微觀尺度下的結晶表面分析,可以解釋在此摻合系統,利用熔融結晶的方法得到 PESu 單晶的證據。

    Phase behavior in specific compositions and unique dual-types crystalline morphologies of binary blends of biodegradable poly(D-lactic acid) (PDLA), or poly(L-lactic acid) (PLLA), with poly(1,3-trimethylene adipate) (PTA) as well as the phase behavior and multiple crystalline morphologies of binary blends of poly(ethylene succinate) (PESu) and poly(methyl acrylate) (PMA) were characterized by using differential scanning calorimetry (DSC), polarized optical microscope (POM), atomic force microscope (AFM) and transmission electron microscope (TEM).

    PartⅠ: Effect of PTA on PDLA, PLLA blend systems, and their stereo-complex: In crystalline morphology and growth mechanism
    There is a partially miscible system with UCST phase behavior under PDLA / PTA= 80/20, 50/50 blends; and the special crystalline morphologies with different film thicknesses were investigated under the certain compositions mentioned above. Dual-types spherulites with two-steps growth behavior are found in 10 μm thick film sample of PDLA / PTA = 80/20, 50/50; additional, dual-types spherulites phenomenon is also observed in 1.0μm thick film sample of PDLA / PTA = 50/50. The similarity of the growth mechanisms in the crystalline morphologies under both film thicknesses was discussed. The type-1 spherulite is from fully interacted PDLA with PTA; while the type-2 spherulite is the crystalline of partial PDLA not interacted completely with PTA, resulting in the classical negative-sign spherulite of neat PDLA. According to dual-type spherulites melt-crystallized at 1.0μm thick film sample of PDLA / PTA = 50/50, the mechanism in double-step growth at 10 μm thick film sample can be derived. Furthermore, the particular crystalline morphology of homo-polymer induced simultaneously from the stereo-complex originated from PDLA and PLLA with equal compositions is explored. Finally, substituting the chiral isomer PLLA for PDLA and replacing PTA with fully amorphous PMA are desired to compare with PDLA / PTA blends system.

    PartⅡ: Effect of PMA on PESu blend systems: In crystalline morphology, lamellae assembly, and phase behavior
    PESu / PMA blend system revealed partial miscibility with a UCST (upper critical solution temperature) phenomenon in partial compositions. By blending with 5~15% PMA, the crystalline morphologies of PESu / PMA were obviously diversified, with patterns being different depending on film thicknesses. Single-crystal like morphology can also be found in ultra-thin films of blends through melt-crystallization in certain limited compositions of PESu / PMA blend. Corresponding to the surface analysis of phase images from AFM, the single crystals of PESu produced from melt-crystallized method without specifically strong interaction between polymers can still be proved.

    摘要 I Abstract III 誌謝 V 圖目錄 IX 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機 2 1-3 研究方向 2 第二章 文獻回顧 4 第一部份 4 2-1 生物分解性聚酯類 4 2-2 雙成份高分子摻合體之相容性 4 2-3 高分子摻合體之熔融結晶 5 2-4 球晶 7 2-5 雙折射理論 16 第二部份 20 第三章 實驗設備、材料與方法 21 3-1 實驗藥品與製備 21 3-2 實驗設備與分析 23 第四章 結果與討論 (Ⅰ) 25 聚丙二醇己二酸酯對右、左旋聚乳酸與其錯合物之影響:在球晶形貌、結晶成長機制之探討 25 4-1 PDLA/PTA兩成份摻合系統之相容性分析 25 4-2 PLA/PTA兩成份摻合系統之球晶形貌與成長速率分析 30 4-3 PDLA/PLLA/PTA三成份摻合系統之立體錯合物對球晶形貌的影響、結晶型態鑑定 52 4-4 非晶型高分子PMA對於對掌性聚乳酸的結晶影響 55 第五章 結果與討論 (Ⅱ) 58 聚乙二醇丁二酸酯與聚甲基丙烯酸酯摻合系統之結晶型態、晶板自組裝、相行為分析 58 5-1 PESu/PMA兩成份摻合系統之相容性分析 58 5-2 PESu/PMA兩成份摻合系統之結晶形貌與晶板自組裝探討 61 第六章 結論 74 (Ⅰ) 聚丙二醇己二酸酯對右、左旋聚乳酸與其錯合物之影響:在球晶形貌、結晶成長機制之探討 74 (Ⅱ) 聚乙二醇丁二酸酯與聚甲基丙烯酸酯摻合系統之結晶型態、晶板自組裝、相行為分析 75 參考文獻 77 附錄 84

    [1] D. R. Paul and S. Newman, "Polymer Blends," New York : Academic Press, vol. 2, 1978.
    [2] H. D. Keith, F. J. Padden, and T. P. Russell, "Morphological Changes in Polyesters and Polyamides Induced by Blending with Small Concentrations of Polymer Diluents," Macromolecules, vol. 22, pp. 666-675, 1989.
    [3] T. G. Park, R. Langer, and S. Cohen, "Poly(L-lactic acid)-Pluronic Blends- Characterization of Phase Separation Behavior, Degradation, and Morphology and Use as Protein-Releasing Matrices," Macromolecules, vol. 25, pp. 116-122, 1992.
    [4] M. Bank, J. Leffingwell, and C. Thies, "The Influence of Solvent upon the Compatibility of Polystyrene and Poly(vinyl methyl ether)," Macromolecules, vol. 4, pp. 43-46, 1971.
    [5] M. Nishimoto, H. Keskkula, and D. R. Pault, "Role of Slow Phase Separation in Assessing the Equilibrium Phase Behaviour of PC-PMMA Blends," Polymer, vol. 32, pp. 272-278, 1991.
    [6] D. J. Walsh, J. S. Higgins, and A. Maconndchie, "Polymer Blends and Mixtures," Mijhoff Publishers, Boston, 1985.
    [7] Y. He, B. Zhu, and Y. Inoue, "Hydrogen Bonds in Polymer Blends," Progress in Polymer Science, vol. 29, pp. 1021-1051, 2004.
    [8] T. Deans, "The Spherulitic Ironstones of West Yorkshire," Geological Magazine, vol. 71, pp. 49-65, 1934.
    [9] X. Zhang, R. Nakagawa, K. H. K. Chan, and M. Kotaki, "Mechanical Property Enhancement of Polylactide Nanofibers through Optimization of Molecular Weight, Electrospinning Conditions, and Stereocomplexation," Macromolecules, vol. 45, pp. 5494-5500, 2012.
    [10] E. Takiyama, N. Harigai, and T. Hokari, "Production of Aliphatic Polyester," Japanese Patent, vol. No.H5-70566, 1993.
    [11] E. Takiyama and S. Seki, "Production of Aliphatic Polyester," Japanese Patent, vol. No.H5-70572, 1993.
    [12] E. Takiyama, T. Fujimaki, S. Seki, T. Hokari, and Y. Hatano, "Method for Manufacturing Biodegradable High Molecular Aliphatic Polyester," US Patent, vol. No.5310782, 1994.
    [13] E. Takiyama, Y. Hatano, T. Fujimaki, S. Seki, T. Hokari, T. Hosogane, and N. Harigai, "Method of Producing a High Molecular Weight Aliphatic Polyester and Film Thereof," US Patent vol. No.5436056, 1995.
    [14] P. J. Barham, A. Keller, E. L. Otun, and P. A. Holmes, "Crystallization and Morphology of a Bacterial Thermoplastic: Poly-3-Hydroxybutyrate," Journal of Materials Science, vol. 19, pp. 2781-2794, 1984.
    [15] T. Iwata and Y. Doi, "Crystal Structure and Biodegradation of Aliphatic Polyester Crystals," Macromolecular Chemistry and Physics, vol. 200, pp. 2429-2442, 1999.
    [16] Z. Gan, H. Abe, and Y. Doi, "Biodegradable Poly(ethylene succinate) (PES). 1. Crystal Growth Kinetics and Morphology," Biomacromolecules, vol. 1, pp. 704-712, 2000.
    [17] Z. Gan, H. Abe, and Y. Doi, "Biodegradable Poly(ethylene succinate) (PES). 2. Crystal Morphology of Melt-Crystallized Ultrathin Film and Its Change after Enzymatic Degradation," Biomacromolecules, vol. 1, pp. 713-720, 2000.
    [18] Y. T. Hsieh, N. T. Kuo, and E. M. Woo, "Thermal Analysis on Phase Behavior of Poly(L-lactic acid) Interacting with Aliphatic Polyesters," Journal of Thermal Analysis and Calorimetry, vol. 107, pp. 745-756, 2011.
    [19] E. M. Woo and L. Chang, "Crystallization and Morphology of Stereocomplexes in Nonequimolar Mixtures of Poly(L-lactic acid) with Excess Poly(D-lactic acid)," Polymer, vol. 52, pp. 6080-6089, 2011.
    [20] J. Zhang;, K. Tashiro;, H. Tsuji;, and A. J. Domb, "Disorder-to-Order Phase Transition and Multiple Melting Behavior of Poly(L-lactide) Investigated by Simultaneous Measurements of WAXD and DSC," Macromolecules, vol. 41, pp. 1352-1357, 2008.
    [21] F. Rossi, T. Casalini, E. Raffa, M. Masi, and G. Perale, "Bioresorbable Polymer Coated Drug Eluting Stent: A Model Study," Molecular Pharmaceutics, vol. 9, pp. 1898-1910, 2012.
    [22] X. Lu and R. A. Weiss, "Relationship between the Glass Transition Temperature and the Interaction Parameter of Miscible Binary Polymer Blends," Macromolecules, vol. 25, pp. 3242-3246, 1992.
    [23] T. G. Fox, "Influence of Diluent and of Copolymer Composition on the Glass Temperature of A Polymer System," Bulletin of the American Physical Society, vol. 1, pp. 123-125, 1956.
    [24] M. Gordon and J. S. Taylor, "Ideal Copolymers and the Second-Order Transitions of Synthetic Rubbers. I. Non-Crystalline Copolymers," Journal of Applied Chemistry, vol. 2, pp. 493-500, 1952.
    [25] T. K. Kwei, "The Effect of Hydrogen Bonding on the Glass Transition Temperatures of Polymer Mixtures," Journal of Polymer Science: Polymer Letters Edition, vol. 22, pp. 307-313, 1984.
    [26] T. K. Kwei, E. M. Pearce, J. R. Pennacchia, and M. Charton, "Correlation between the Glass Transition Temperatures of Polymer Mixtures and Intermolecular Force Parameters," Macromolecules, vol. 20, pp. 1174-1176, 1987.
    [27] P. R. Couchman, "Compositional Variation of Glass Transition Temperature. 2. Application of the Thermodynamic Theory to Compatible Polymer Blends.," Macromolecules, vol. 11, pp. 1156-1161, 1978.
    [28] V. Ratta, "Chapter 2 Polymer Crystallization – Literature review," Virginia Tech., 1999.
    [29] A. G. Shtukenberg, Y. O. Punin, E. Gunn, and B. Kahr, "Spherulites," Chemical Reviews, vol. 112, pp. 1805-1838, 2012.
    [30] H. D. Keith and F. J. Padden, "A Phenomenological Theory of Spherulitic Crystallization," Journal of Applied Physics, vol. 34, pp. 2409-2421, 1963.
    [31] H. D. Keith, "On the Relation between Different Morphological Forms in High Polymers," Journal of Polymer Science Part A: Polymer Chemistry, vol. 2, pp. 4339-4360, 1964.
    [32] D. Sadler and G. Gilmer, "Rate-Theory Model of Polymer Crystallization," Physical Review Letters, vol. 56, pp. 2708-2711, 1986.
    [33] D. Sadler and G. Gilmer, "Selection of Lamellar Thickness in Polymer Crystal Growth: A Rate-Theory Model," Physical Review B, vol. 38, pp. 5684-5693, 1988.
    [34] Y. Wang, M. Rafailovich, J. Sokolov, D. Gersappe, T. Araki, Y. Zou, A. D. L. Kilcoyne, H. Ade, G. Marom, and A. Lustiger, "Substrate Effect on the Melting Temperature of Thin Polyethylene Films," Physical Review Letters, vol. 96, pp. 028303.1-4, 2006.
    [35] M. L. D. Lorenzo, "Spherulite Growth Rates in Binary Polymer blends," Prog. Polym. Sci., vol. 28, pp. 663–689, 2003.
    [36] Y. Wang, C. M. Chan, K. M. Ng, and L. Li, "What Controls the Lamellar Orientation at the Surface of Polymer Films during Crystallization?," Macromolecules, vol. 41, pp. 2548-2553, 2008.
    [37] Y. Ma, W. Hu, and G. Reiter, "Lamellar Crystal Orientations Biased by Crystallization Kinetics in Polymer Thin Films," Macromolecules, vol. 39, pp. 5159-5164, 2006.
    [38] J. D. Hoffman, G. T. Davis, and J. I. Lauritzen, "The Rate of Crystallization of Linear Polymers with Chain Folding," Treatise on Solid State Chemistry (New York: Plenum Press), vol. 3, 1976.
    [39] F. Khoury and Passaglia, "Crystalline and Noncrystalline Solids," Treatise on Solid State Chemistry (New York: Plenum Press), vol. 3, 1976.
    [40] P. Pan and Y. Inoue, "Polymorphism and Isomorphism in Biodegradable Polyesters," Progress in Polymer Science, vol. 34, pp. 605-640, 2009.
    [41] Y. X. Liu and E. Q. Chen, "Polymer Crystallization of Ultrathin Films on Solid Substrates," Coordination Chemistry Reviews, vol. 254, pp. 1011-1037, 2010.
    [42] K. C. Yen, E. M. Woo, and K. Tashiro, "Six Types of Spherulite Morphologies with Polymorphic Crystals in Poly(heptamethylene terephthalate)," Polymer, vol. 51, pp. 5592-5603, 2010.
    [43] K. C. Yen, E. M. Woo, and K. Tashiro, "Microscopic Fourier Transform Infrared Characterization on Two Types of Spherulite with Polymorphic Crystals in Poly(heptamethylene terephthalate)," Macromolecular Rapid Communications, vol. 31, pp. 1343-1347, 2010.
    [44] Y. F. Chen, E. M. Woo, and S. H. Li, "Dual Types of Spherulites in Poly(octamethylene terephthalate) Confined in Thin-Film Growth," Langmuir, vol. 24, pp. 11880-11888, 2008.
    [45] E. M. Woo, S. Nurkhamidah, and Y. F. Chen, "Surface and Interior Views on Origins of Two Types of Banded Spherulites in Poly(nonamethylene terephthalate)," Physical Chemistry Chemical Physics, vol. 13, pp. 17841-17851, 2011.
    [46] S. Nurkhamidah and E. M. Woo, "Correlation of Crack Patterns and Ring Bands in Spherulites of Low Molecular Weight Poly(L-lactic acid)," Colloid and Polymer Science, vol. 290, pp. 275-288, 2012.
    [47] D. Maillard and R. E. Prud’homme, "Differences Between Crystals Obtained in PLLA-Rich or PDLA-Rich Stereocomplex Mixtures," Macromolecules, vol. 43, pp. 4006-4010, 2010.
    [48] Y. Kikkawa, H. Abe, T. Iwata, Y. Inoue, and Y. Doi, "Crystallization, Stability, and Enzymatic Degradation of Poly(L-lactide) Thin Film," Biomacromolecules, vol. 3, pp. 350-356, 2002.
    [49] B. Kalb and A. J. Pennings, "General Crystallization Behaviour of Poly(L-lactic acid)," Polymer, vol. 21, pp. 607-612, 1980.
    [50] Y. Ichikawa, K. Noguchi, K. Okuyama, and J. Washiyama, "Crystal Transition Mechanisms in Poly(ethylene succinate)," Polymer, vol. 42, pp. 3703-3708, 2001.
    [51] K. Kawashima, R. Kawano, T. Miyagi, S. Umemoto, and N. Okui, "Morphological Changes in Flat-on and Edge-on Lamellae of Poly(ethylene succinate) Crystallized from Molten Thin Films," Journal of Macromolecular Science, Part B: Physics, vol. 42, pp. 889-899, 2003.
    [52] I. H. Huang, L. Chang, and E. M. Woo, "Tannin Induced Single Crystalline Morphology in Poly(ethylene succinate)," Macromolecular Chemistry and Physics, vol. 212, pp. 1155-1164, 2011.
    [53] T. Iwata and Y. Doi, "Morphology and Enzymatic Degradation of Solution-Grown Single Crystals of Poly(ethylene succinate)," Macromolecules, vol. 34, pp. 7343-7348, 2001.
    [54] R. J. Pazur, P. J. Hocking, S. Raymond, and R. H. Marchessault, "Crystal Structure of Syndiotactic Poly(β-hydroxybutyrate) from X-ray Fiber and Powder Diffraction Analyses and Molecular Modeling," Macromolecules, vol. 31, pp. 6585-6592, 1998.
    [55] Y. Saito, "Statistical Physics Of Crystal Growth," World Scientific, Singapore, 1996.
    [56] J. D. Hoffman and R. L. Miller, "Kinetic of Crystallization from the Melt and Chain Folding in Polyethylene Fractions Revisited: Theory and Experiment," Polymer, vol. 38, pp. 3151-3212, 1997.
    [57] D. C. Bassett, A. Keller, S. Mitsuhashi, and H. H. Wills, "New Features in Polymer Crystal Growth from Concentrated Solutions," Journal of Polymer Science Part A: Polymer Chemistry, vol. 1, pp. 763-788, 1963.
    [58] P. H. Geil, "Growth and Perfection of Crystals," New York : Wiley, 1958.
    [59] J. P. Yang, Q. Liao, J. J. Zhou, X. Jiang, X. H. Wang, Y. Zhang, S. D. Jiang, S. K. Yan, and L. Li, "What Determines the Lamellar Orientation on Substrates?," Macromolecules, vol. 44, pp. 3511-3516, 2011.
    [60] Y. Wang, S. Ge, M. Rafailovich, J. Sokolov, Y. Zou, H. Ade, J. Lüning, A. Lustiger, and G. Maron, "Crystallization in the Thin and Ultrathin Films of Poly(ethylene−vinyl acetate) and Linear Low-Density Polyethylene," Macromolecules, vol. 37, pp. 3319-3327, 2004.
    [61] A. Shtukenberg, E. Gunn, M. Gazzano, J. Freudenthal, E. Camp, R. Sours, E. Rosseeva, and B. Kahr, "Bernauer's Bands," ChemPhysChem, vol. 12, pp. 1558-1571, 2011.
    [62] H. D. Keith and F. J. Padden, "The Optical Behavior of Spherulites in Crystalline Polymers. Part I. Calculation of Theoretical Extinction Patterns in Spherulites with Twisting Crystalline Orientation," Journal of Polymer Science, vol. 39, pp. 101-122, 1959.
    [63] H. D. Keith and F. J. Padden, "The Optical Behavior of Spherulites in Crystalline Polymers. Part II. The Growth and Structure of the Spherulites," Journal of Polymer Science, vol. 39, pp. 123-138, 1959.
    [64] H. D. Keith and F. J. Padden, "Twisting Orientation and the Role of Transient States in Polymer Crystallization," Polymer, vol. 25, pp. 28-42, 1984.
    [65] H. D. Keith and F. J. Padden, "Banding in Polyethylene and Other Spherulites," Macromolecules, vol. 29, pp. 7776-7786, 1996.
    [66] T. Kyu, H. W. Chiu, A. J. Guenthner, Y. Okabe, H. Saito, and T. Inoue, "Rhythmic Growth of Target and Spiral Spherulites of Crystalline Polymer Blends," Physical Review Letters, vol. 83, pp. 2749-2752, 1999.
    [67] J. Xu, B. Guo, Z. Zhang, J. Zhou, Y. Jiang, S. Yan, L. Li, Q. Wu, G. Chen, and J. M. Schultz, "Direct AFM Observation of Crystal Twisting and Organization in Banded Spherulites of Chiral," Macromolecules, vol. 37, pp. 4118-4123, 2004.
    [68] A. G. Shtukenberg, J. Freudenthal, and B. Kahr, "Reversible Twisting during Helical Hippuric Acid Crystal Growth," Journal of the American Chemical Society, vol. 132, pp. 9341-9349, 2010.
    [69] E. M. Woo and Y. F. Chen, "Single- and Double-Ring Spherulites in Poly(nonamethylene terephthalate)," Polymer, vol. 50, pp. 4706-4717, 2009.
    [70] B. Lotz and S. Z. D. Cheng, "A Critical Assessment of Unbalanced Surface Stresses as the Mechanical Origin of Twisting and Scrolling of Polymer Crystals," Polymer, vol. 46, pp. 577-610, 2005.
    [71] Y. Duan, Y. Jiang, S. Jiang, L. Li, S. Yan, and J. M. Schultz, "Depletion-Induced Nonbirefringent Banding in Thin Isotactic Polystyrene Thin Films," Macromolecules, vol. 37, pp. 9283-9286, 2004.
    [72] Y. Duan, Y. Zhang, S. Yan, and J. M. Schultz, "In Situ AFM Study of the Growth of Banded Hedritic Structures in Thin Films of Isotactic Polystyrene," Polymer, vol. 46, pp. 9015-9021, 2005.
    [73] A. Frömsdorf, E. M. Woo, L.-T. Lee, Y.-F. Chen, and S. Förster, "Atomic Force Microscopy Characterization and Interpretation of Thin-Film Poly(butylene adipate) Spherulites with Ring Bands," Macromol Rapid Commun, vol. 29, pp. 1322-1328, 2008.
    [74] E. M. Woo, L. Y. Wang, and S. Nurkhamidah, "Crystal Lamellae of Mutually Perpendicular Orientations by Dissecting onto Interiors of Poly(ethylene adipate) Spherulites Crystallized in Bulk Form," Macromolecules, vol. 45, pp. 1375-1383, 2012.
    [75] G. Lugito and E. M. Woo, "Lamellar Assembly Corresponding to Transitions of Positively to Negatively Birefringent Spherulites in Poly(ethylene adipate) with Phenoxy," Colloid and Polymer Science, vol. 291, pp. 817-826, 2013.
    [76] S. Nurkhamidah and E. M. Woo, "Unconventional Non-Birefringent or Birefringent Concentric Ring-Banded Spherulites in Poly(L-lactic acid) Thin Films," Macromolecular Chemistry and Physics, vol. 214, pp. 673-680, 2013.
    [77] A. Michel-Lévy, "Les Minéraux des rochest," 1888.
    [78] 何曼君等人, "高分子物理," 復旦大學出版社, 2000.
    [79] J. G. Delly, "Essentials of Polarized Light Microscopy, Fifth Edition," Westmont, Illinois: College of Microscopy, 2008.
    [80] E. Murayama, "Optical Properties of Ringed Spherulites," Tokyo Institute of Technology, 2002.
    [81] 李允明, "高分子物理實驗," 浙江大學出版社, 1996.
    [82] J. M. Marentette and G. R. Brown, "Polymer Spherulites I. Birefringence and Morphology," Journal of Chemical Education, vol. 70, pp. 435-439, 1993.
    [83] C. S. Fuller and C. L. Erickson, "An X-Ray Study of Some Linear Polyesters," Journal of the American Chemical Society, vol. 59, pp. 344-351, 1937.
    [84] A. S. Ueda, Y. Chatani, and H. Tadokoro, "Structural Studies of Polyesters. IV. Molecular and Crystal Structures of Poly(ethylene succinate) and Poly(ethylene oxalate)," Polymer Journal, vol. 2, pp. 387-397, 1971.
    [85] Y. Ichikawa, J. Washiyama, Y. Moteki, K. Noguchi, and K. Okuyama, "Crystal Modification in Poly(ethylene succinate)," Polymer Journal, vol. 27, pp. 1264-1266, 1995.
    [86] S. Nurkhamidah, E. M. Woo, I. H. Huang, and C. C. Su, "Phase Behavior and Crystal Morphology in Poly(ethylene succinate) Biodegradably Modified with Tannin," Colloid and Polymer Science, vol. 289, pp. 1563-1578, 2011.
    [87] Z. Qiu, T. Ikehara, and T. Nishi, "Crystallization Behaviour of Biodegradable Poly(ethylene succinate) from the Amorphous State," Polymer, vol. 44, pp. 5429-5437, 2003.
    [88] G. Z. Papageorgiou and D. N. Bikiaris, "Crystallization and Melting Behavior of Three Biodegradable Poly(alkylene succinates). A Comparative Study," Polymer, vol. 46, pp. 12081-12092, 2005.
    [89] G. Z. Papageorgiou, D. S. Achilias, and D. N. Bikiaris, "Crystallization Kinetics of Biodegradable Poly(butylene succinate) under Isothermal and Non-Isothermal Conditions," Macromolecular Chemistry and Physics, vol. 208, pp. 1250-1264, 2007.

    無法下載圖示 校內:2019-06-11公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE