簡易檢索 / 詳目顯示

研究生: 曾柏勳
Tseng, Po-Hsun
論文名稱: 應用於高黏度栓塞劑之單粒徑噴霧造粒技術研究
Generation of Monodispersed Particle for Embolization Microspheres with High Viscosity by Spraying Process
指導教授: 王覺寬
Wang, Muh-Rong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 97
中文關鍵詞: 壓電式噴嘴噴霧造粒單粒徑液滴栓塞微球高黏滯流體
外文關鍵詞: Monodispersed particle, Particle generation, Embolization microsphere, Piezoelectric, High viscosity fluid
相關次數: 點閱:84下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 栓塞治療術為一種微創手術,將栓塞物藉導管經由肝動脈引導至腫瘤位置,並將供應腫瘤血液的肝動脈以栓塞物如含化療藥物之栓塞微球等注入,以提供腫瘤細胞最大劑量的局部治療。本研究探討壓電式單粒徑產生技術,目標為生產粒徑範圍介於250 於圍介於為生產粒徑範圍的微球,以因應醫療用栓塞劑之需求。本研究之壓電式單粒徑產生裝置,係利用注射幫浦將工作流體注入噴嘴內,施以正弦波之外部激擾,使液柱在擾動下形成單粒徑液滴。本研究所採用之工作流體包含甘油混合溶液、醫療用栓塞劑配方及硬脂酸等材料。首先以甘油混合溶液做噴嘴性能測試及造粒參數研究,透過無因次參數分析,找出適用於單粒徑造粒之經驗公式,接著將其運用於醫療用栓塞劑之噴霧造粒實驗,並分析造粒後之微球粒徑分布。實驗結果顯示,工作流體在激擾頻率1.0 kHz ~ 10.5 kHz區間內,皆可產生單粒徑液滴,其粒徑隨頻率增加而下降,在此區間外則為多粒徑液滴產生區。工作流體之黏度在35.2 cP~ 80.3 cP間,對於液滴粒徑影響不顯著。實驗結果亦顯示,工作流體之表面張力在38.0 ×10-3N/m ~ 67.1 ×10-3 N/m間,對於液滴粒徑影響亦不顯著。主要影響液滴粒徑之參數為激擾頻率、液柱速度及噴口孔徑,進一步整理可知,液滴粒徑與孔徑比(dp/do)隨史卓荷數(St)增加而下降,產生之單粒徑液滴之粒徑為孔徑之1.8~3.4倍,因此可得液滴粒徑與孔徑比對史卓荷數之經驗公式。進一步使用醫療用栓塞劑作為工作流體進行噴霧造粒,實驗結果顯示,自行設計之冷卻艙之冷卻效果相當良好,收集到之顆粒皆為硬化之球型粒子,本系統可成功製造單粒徑醫療用栓塞微球及硬脂酸微球,其平均粒徑分別為330.2別為別為球,其平均粒徑分及314.6 為別為球,其平均粒徑分別,適用於醫療栓塞之需求。

    Transcatheter arterial chemoembolization is a minimally invasive surgical treatment. A catheter is introduced through the abdominal aorta into the target hepatic artery. The particles containing chemotherapy agent is injected through the catheter to the tumor at the selected blood vessel location. It would result in removal of the cancer cells in the treatment process. This research aims at the development of a piezoelectric monodipersed particle generation system for the production of medical embolization microspheres. The laminar fluid stream issued from the monodipersed particle generation nozzle is disintegrated to monodispersed particle under excitation within a frequency range while non-uniform droplet would be produce out of this range. The performance of monodipersed particle generation nozzle was first characterized by glycerin mixture. Then, the generation of the medical embolization microspheres and stearic acid microspheres was performed. Results show that the particle size is decreased as the excitation frequency is increased. Furthermore, the particle size is increased as the Reynolds number of the working fluid was increased. Results show that the effects of Surface tension of the working fluid within the range of 38.0 ×10-3 N/m to 67.1 ×10-3 N/m to particle size is insignificant. In addition, the viscosity of the working fluid within the range of 35.2 cP to 80.3 cP has little effect on particle size. It is concluded that the particle size can be controlled effectively by increasing excitation frequency and reducing nozzle orifice as well as Reynolds number. Dimensional analysis indicates that the ratio of particles mean diameter and orifice diameter is a function of Strouhal number. It can be expressed in terms of an empirical formula. It turns out that the particles diameter of the glycerin mixture is 1.8~3.4 times of the orifice diameter. In the test using medical embolization material and stearic acid, the bead size is 330.2 μm± 24.0 μm and 314.6 μm ± 16.1 μm, respectively. The bead shape is highly spherical and hence is suitable for medical embolization applications

    摘要 I ABSTRACT III 誌謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 符號說明 XV 第一章 緒論 1 1-1 研究動機與目的 1 1-2 文獻回顧 3 1-2-1 液柱破裂過程 3 1-2-2 供需式單粒徑液滴噴嘴 10 1-2-3 連續式單粒徑液滴噴嘴 13 1-2-4 肝動脈腫瘤栓塞術 17 第二章 實驗設備與儀器及實驗方法與步驟 19 2-1 實驗設備 19 2-1-1 壓電式單粒徑產生噴嘴 19 2-1-2 外部激擾裝置 26 2-1-3 液體供應裝置 28 2-1-4 加熱溫度控制裝置 29 2-1-5 單粒徑液滴冷卻收集裝置 30 2-1-6 單粒徑液滴影像觀測裝置 31 2-1-7 粒徑分析裝置 31 2-2 實驗儀器 32 2-2-1 黏度測試儀 32 2-2-2 電動攪拌器 33 2-2-3 PID溫度控制加熱板 34 2-2-4 電子天秤 34 2-2-5 粉末觀測儀器 35 2-2-6 表面張力儀 36 2-3 實驗方法與步驟 37 2-3-1 實驗條件 37 2-3-2 數據之取樣與分析 41 2-3-3 參數之無因次分析 41 2-3-4 實驗步驟 43 第三章 實驗結果與討論 45 3-1 甘油混和溶液之單粒徑液滴產生實驗 45 3-1-1 外部激擾頻率及振幅對於破裂長度之影響 46 3-1-2 噴口孔徑對於噴霧粒徑及工作頻寬之影響 50 3-1-3 雷諾數對於噴霧粒徑及工作頻寬之影響 53 3-1-4 黏滯係數對於噴霧粒徑及工作頻寬之影響 58 3-1-5 表面張力對於噴霧粒徑及工作頻寬之影響 65 3-1-6 單液滴甘油混和溶液實驗之無因次分析 72 3-1-7 史卓荷數對液滴粒徑與孔徑比之影響 73 3-2 醫療用栓塞劑及硬脂酸微球噴霧造粒實驗 78 3-2-1 醫療用栓塞劑微球噴霧造粒實驗 78 3-2-2 硬脂酸微球噴霧造粒實驗 90 第四章 結論與未來工作 93 4-1 結論 93 4-2 未來工作 95 參考文獻 96

    [1] Dabora, E. K., “Production of Mondisperse Sprays,” The Review of Scientific Instruments,Vol. 38, pp. 502-506, 1967.
    [2] Weber, C., “Disintegration of Liquid Jets,” Z. Angew. Math. Mech., Vol. 11, no. 2, pp.136-159, 1931.
    [3] Haenlein, A., “Disintegration of a Liquid Jet,” NACA TN 659, 1932.
    [4] Ohnesorge, W., “Formation of Drop by Nozzles and the Breakup of Liquid Jet,” Z. Angew.Math. Mech., Vol. 16, pp. 355-358, 1936.
    [5] Richard G. Sweet, “ High Frequency Recording with Elecrostatically Deflected Ink Jet”, The Review of Scientific Instruments, Vol. 36, no. 2, pp.131-136, 1965.
    [6] Connon, C. S. and Dunn-Rankin, D., “Droplet Stream Dynamics at High Ambient Pressure,” Atomization and Spray, Vol. 6, pp. 485-497, 1996.
    [7] F. C. Lee, “PZT Printing Applications, Technologies, New Devices”, UltrasonicSymposium, IEEE, pp.693-697, 1988.
    [8] S. Kamisuki, M. Fujii, T. Takekoshi, C. Tezuka and M. Atobe, “A high Resolution, Electrostatically-Driven Commercial Inkjet Head”, the Thirteenth Annual
    International Conference on Micro Electro Mechanical Systems, IEEE, pp.793-798, Jan. 23~27, 2000.
    [9] 葉吉田,“噴墨列印技術在電子工業之應用”,財團法人工業技術研究院
    [10] S. Kamisuki, M. Fujii, T. Takekoshi, C. Tezuka and M. Atobe, “A Low Power, Small Electrostatically-Driven Commercial Inkjet Head”, the Eleventh Annual International Workshop on Micro Electro Mechanical Systems, IEEE, Jan. 25-29, pp.63-68, 1998.
    [11] V. T. Tran, J. P. Benoit, M. C. Venier-Julienne, “Why and how to prepare biodegradable, monodispersed, polymericmicroparticles in the field of pharmacy? ”, International Journal of Pharmaceutics, Vol. 407, no.1, pp.1-11, 2011
    [12] Schnieder, J. M. and Hendricks, C. D., “Source of Uniform-Sized Liquid Droplets,” Rev. Sci. Instrum. Vol. 35, pp.1349-1350, 1964.
    [13] G. Brenn, T. Helpio and F. Dirst, “A new apparatus for the producton of monodisperse sprays at high flow rates”, Chemical Engineering Science, vol. 52 No. 2. pp 237-244,1997.
    [14] Armster, S. Q., Delplanque, J. P., Lai, W. H., and Lavernia, E. J., “Monosize Droplet Deposition as a Means to Investigate Droplet Behavior during Spray Deposition,” Metallurgical and Materials Transactions B, Vol. 31B, pp. 1333-1344, 2000.
    [15] Imamura Y, Sano H. “International comparisons of cumulative risk of liver cancer, from Cancer Incidence in Five Continents Vol. VIII”, Jpn J Clin Oncol, vol.36, no.4, pp.259-60, 2006.
    [16] Lang HC, Wu JC, Yen SH, Lan CF, Wu SL, “The lifetime cost of hepatocellular carcinoma : a claims data analysis from a medical centre in Taiwan” Appl Health Econ Health Policy, vol.61, pp.55-65, 2008.
    [17] Sturm JW, Keese MA, Bonninghoff RG, Wustner M., Post S., “Locally ablative therapies of hepatocellular carcinoma”, Onkologie , vol.24, pp.35-45, 2001.
    [18] Chung JW, “Transcatheter arterial chemoembolization of hepatocellular carcinoma” Hepatogastroenterology, vol.45 , pp.1236-1241, 1998.
    [19] Piezomechnik GmbH, “Low voltage co-fired multilayerstacks, rings and chips for actuation”
    [20] Fan, K.C., Chen, J.Y., Wang, S, H. and Pan, W. J., “Development of a drop-on-demand droplet generator for one-drop-fill technology”, Sensors and Actuator A: Physics, vol.147, no.2, pp.649–655, 2008.

    下載圖示 校內:2018-08-08公開
    校外:2018-08-08公開
    QR CODE