| 研究生: |
鄭宇翔 Cheng, Yu-Hsiang |
|---|---|
| 論文名稱: |
資料科學於CNC機台健康管理之摩擦力估測與補償 Data Science for Friction Estimation and Compensation on Equipment Health Management of CNC Machine |
| 指導教授: |
李家岩
Lee, Chia-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 摩擦力估測 、故障預測和健康管理 、自我迴歸 、Z轉換 、符號式迴歸 、殘差分析 、伺服控制系統 |
| 外文關鍵詞: | Friction force estimation, Prognostic and health management (PHM), Autoregressive model, Z-transform, Symbolic Regression, Residual Analysis, Servo control system |
| 相關次數: | 點閱:118 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
精密工業中,進行加工過程的工件經常是相當昂貴的,因此對於品質的要求更是嚴謹,希望能以外力的補償上達到一定的水準;然而在摩擦力的補償往往會受到「遲滯效應」影響,過去文獻針對此效應提出相關數學模型,但實務上卻因受限於不同機型與工況導致模型無法良好建立進而進行完整的補償。
本研究提出一套針對遲滯效應區段的兩階段摩擦力模型架構與參數估計,應用於精密機器的伺服控制系統。第一階段,本研究根據物理模型的假設與多元線性迴歸分析(Multiple Linear Regression)進行機台摩擦力的數值估計,並透過馬達速度變化對於摩擦力影響之實驗,找出影響其大小的重要變數為加工位置的變化;接著,透過觀察摩擦力相對位置變化的關係找出數學模型,其結果與相關文獻的內容相互呼應;最後,利用自我迴歸模型(Autoregressive Model)與訊號處理中的Z轉換(Z-Transform)進行數學模型中的參數估計;另一方面,針對不同機台與加工條件,根據第一階段所建立的基礎模型於第二階段透過符號式迴歸(Symbolic Regression)進行殘差分析,並以基因編程(Genetic Programming)的手法完成符號式迴歸。
本研究以台灣電子設備製造公司為例進行實證研究,以臥式鑽孔中心機實驗並透過電子循圓測試的方式,來觀察因遲滯效應而產生的循圓尖角誤差藉由本研究第一階段提出的基礎摩擦力模型所補償之結果;另一方面,透過預測三種不同的CNC機台之摩擦力驗證此研究提出的兩階段摩擦力預測與補償架構能適用於各式機台與工況,成果顯示此架構所建構之摩擦力模型皆能達到消彌循圓尖角誤差以及估測CNC機台摩擦力的效果,進一步保持精密加工的精度與減少裝設感測器的成本,並有利於設備的故障預測和健康管理。
In the precision industry, the quality requirements of work pieces are strict. It is hoped that the compensation of the external force will reach a certain level. However, the compensation of the friction is often subject to the hysteresis effect which is nonlinear phenomenon.
This study proposes a two-phase framework of friction model and parameter estimation for the hysteresis effect segment, which is applied to the servo control system of precision machines. In the first phase, based on the assumptions of the physical model and the multiple regression analysis, the numerical estimation of the friction of the machine is carried out. Through the experiment, the important variable affecting the friction is discovered as the change of the machining position. Then, the mathematical model is initial found observing the relationship between the frictional force and the displacement; moreover, the results correspond to the related literature. Finally, autoregressive model and Z-transform are used to estimate the parameters in the model. On the other hand, for different machines and processing conditions, this study, in the second phase, uses symbolic regression to conduct residual analysis based on the exponential-based model established in the first phase, and genetic programming is applied to complete symbolic regression.
This study takes electronic equipment manufacturing company in Taiwan as an example to conduct an empirical study. The tapping center machine experiment and the electronic circle test method are used to observe the circular spike error caused by the friction force to validate the proposed exponential-based model in the first phase. Furthermore, for predicting the friction of three different CNC machines, the proposed two-phase friction prediction and compensation framework can be applied to various machines and working conditions. The result shows that the friction models constructed by this framework can achieve the effect of eliminating the circular spike error and estimating the friction of the CNC machines further maintain the precision of machining and save the cost of additional sensors. The result benefits the equipment prognostic and health management (PHM).
Abdulshahed, A. M., Longstaff, A. P., & Fletcher, S. (2015). The application of ANFIS prediction models for thermal error compensation on CNC machine tools. Applied Soft Computing, 27, 158-168.
Al-Bender, F. (2010). Fundamentals of friction modeling. Paper presented at the Proceedings, ASPE Spring Topical Meeting on Control of Precision Systems, MIT, April 11-13, 2010.
Al-Bender, F., Lampaert, V., & Swevers, J. (2005). The generalized Maxwell-slip model: a novel model for friction Simulation and compensation. IEEE Transactions on Automatic Control, 50(11), 1883-1887.
Armstrong-Helouvry, B., & Dupont, P. (1993). Friction modeling for control. Paper presented at the 1993 American Control Conference.
Augusto, D. A., & Barbosa, H. J. (2000). Symbolic regression via genetic programming. Paper presented at the Proceedings. Vol. 1. Sixth Brazilian Symposium on Neural Networks.
Bona, B., & Indri, M. (2005). Friction compensation in robotics: an overview. Paper presented at the Proceedings of the 44th IEEE Conference on Decision and Control.
Chen, Q., Zhang, M., & Xue, B. (2017). Feature Selection to Improve Generalization of Genetic Programming for High-Dimensional Symbolic Regression. IEEE Transactions on Evolutionary Computation, 21(5), 792-806.
Cox, D. R., & Snell, E. J. (1968). A general definition of residuals. Journal of the Royal Statistical Society: Series B (Methodological), 30(2), 248-265.
Cruz, J. N. d., Ortega, E. M. M., & Cordeiro, G. M. (2015). The log-odd log-logistic Weibull regression model: modelling, estimation, influence diagnostics and residual analysis. Journal of Statistical Computation and Simulation, 86(8), 1516-1538.
Dahl, P. R. (1968). A solid friction model.
Dahl, P. R. (1977). Measurement of solid friction parameters of ball bearings.
De Wit, C. C., Olsson, H., Astrom, K. J., & Lischinsky, P. (1995). A new model for control of systems with friction. IEEE Transactions on Automatic Control, 40(3), 419-425.
Deresiewicz, H. (1988). Amontons and Coulomb, friction’s founding fathers. In Approaches to Modeling of Friction and Wear (pp. 56-60): Springer.
FANUC, A. (2010). SERVO MOTOR Series parameter manual. FANUC Corp, 193.
Freidovich, L., Robertsson, A., Shiriaev, A., & Johansson, R. (2010). LuGre-Model-Based Friction Compensation. IEEE Transactions on Control Systems Technology, 18(1), 194-200.
Hall, R. C., & Seborg, D. E. (1989). Modelling and self-tuning control of a multivariable ph neutralization process part i: Modelling and multiloop control. Paper presented at the 1989 American Control Conference.
Huang, S., & Tan, K. K. (2012). Intelligent Friction Modeling and Compensation Using Neural Network Approximations. IEEE Transactions on Industrial Electronics, 59(8), 3342-3349.
Huang, S., Tan, K. K., & Lee, T. H. (2000). Adaptive friction compensation using neural network approximations. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 30(4), 551-557.
Hung, Y. (2019). Constrained Particle Swarm Optimization and Bayesian Process Monitoring for Health Maintenance in Three-Mass Resonant Servo Control System with Friction. (Master). National Cheng Kung University, Tainan City.
Jamaludin, Z., Van Brussel, H., & Swevers, J. (2009). Friction Compensation of an $XY$ Feed Table Using Friction-Model-Based Feedforward and an Inverse-Model-Based Disturbance Observer. IEEE Transactions on Industrial Electronics, 56(10), 3848-3853.
Kommenda, M., Burlacu, B., Kronberger, G., & Affenzeller, M. (2019). Parameter identification for symbolic regression using nonlinear least squares. Genetic Programming and Evolvable Machines.
Koza, J. R. (1992). A genetic approach to the truck backer upper problem and the inter-twined spiral problem. Paper presented at the Proceedings of IJCNN international joint conference on neural networks.
Koza, J. R., & Poli, R. (2003). A genetic programming tutorial. Introductory tutorials in optimization, search and decision support, 8.
Langdon, W. B., Poli, R., McPhee, N. F., & Koza, J. R. (2008). Genetic Programming: An Introduction and Tutorial, with a Survey of Techniques and Applications. In Computational Intelligence: A Compendium (pp. 927-1028).
Larky, M., Riahi, M., Ahadi, E., & Javidrad, H. Utilization of Neural Network in Prognostics for Industrial Equipment.
Lee, C.-Y., Wu, C.-S., and Hung, Y.-H. (2020). In-line Predictive Monitoring Framework. Accepted in IEEE Transactions on Automation Science and Engineering.
Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., & Siegel, D. (2014). Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications. Mechanical Systems and Signal Processing, 42(1-2), 314-334.
Lee, T. H., Tan, K. K., & Huang, S. (2011). Adaptive Friction Compensation with a Dynamical Friction Model. IEEE/ASME Transactions on Mechatronics, 16(1), 133-140.
Li, J., Dani, H., Hu, X., & Liu, H. (2017). Radar: Residual Analysis for Anomaly Detection in Attributed Networks. Paper presented at the IJCAI.
Li, R., Henson, M. A., & Kurtz, M. J. (2004). Selection of model parameters for off-line parameter estimation. IEEE Transactions on Control Systems Technology, 12(3), 402-412.
Li, Y., Ang, K. H., & Chong, G. C. (2006). PID control system analysis and design. IEEE Control Systems Magazine, 26(1), 32-41.
Liu, Y. F., Li, J., Zhang, Z. M., Hu, X. H., & Zhang, W. J. (2015). Experimental comparison of five friction models on the same test-bed of the micro stick-slip motion system. Mechanical Sciences, 6(1), 15-28.
Lund, B. F., & Foss, B. A. (2008). Parameter ranking by orthogonalization—Applied to nonlinear mechanistic models. Automatica, 44(1), 278-281.
Ma, J., Bi, Z., Ting, T. O., Hao, S., & Hao, W. (2016). Comparative performance on photovoltaic model parameter identification via bio-inspired algorithms. Solar Energy, 132, 606-616.
Marques, V. M., Munaro, C. J., & Shah, S. L. (2015). Detection of Causal Relationships Based on Residual Analysis. IEEE Transactions on Automation Science and Engineering, 12(4), 1525-1534.
Mei, X., Tsutsumi, M., Yamazaki, T., & Sun, N. (2001). Study of the friction error for a high-speed high precision table. International Journal of Machine Tools and Manufacture, 41(10), 1405-1415.
Minorsky, N. (1922). Directional stability of automatically steered bodies. Journal of the American Society for Naval Engineers, 34(2), 280-309.
Moon, S.-M., Huh, J., Hong, D., Lee, S., & Han, C.-S. (2015). Vertical motion control of building facade maintenance robot with built-in guide rail. Robotics and Computer-Integrated Manufacturing, 31, 11-20.
Morin, A. J. (1833). New friction experiments carried out at Metz in 1831–1833. Proceedings of the French Royal Academy of Sciences, 4(1), 128.
Ortega, E. M. M., Paula, G. A., & Bolfarine, H. (2008). Deviance residuals in generalised log-gamma regression models with censored observations. Journal of Statistical Computation and Simulation, 78(8), 747-764.
Put, R., Xu, Q. S., Massart, D. L., & Vander Heyden, Y. (2004). Multivariate adaptive regression splines (MARS) in chromatographic quantitative structure-retention relationship studies. J Chromatogr A, 1055(1-2), 11-19.
Rafan, N., Jamaludin, Z., Abdullah, L., Chiew, T. H., & Mat Ali, M. (2012). Review on friction compensation approach for machine tools application. Paper presented at the International Conference on Design and Concurrent Engineering.
Ramesh, R., Mannan, M., & Poo, A. (2000). Error compensation in machine tools—a review: part I: geometric, cutting-force induced and fixture-dependent errors. International Journal of Machine Tools and Manufacture, 40(9), 1235-1256.
Reynolds, O. (1886). IV. On the theory of lubrication and its application to Mr. Beauchamp tower’s experiments, including an experimental determination of the viscosity of olive oil. Philosophical transactions of the Royal Society of London(177), 157-234.
Richards, L. (1951). Integument of arthropods: U of Minnesota Press.
Ruderman, M. (2015). Presliding hysteresis damping of LuGre and Maxwell-slip friction models. Mechatronics, 30, 225-230.
Schmidt, M., & Lipson, H. (2009). Distilling free-form natural laws from experimental data. Science, 324(5923), 81-85.
Secchi, A. R., Cardozo, N. S. M., Neto, E. A., & Finkler, T. F. (2006). An algorithm for automatic selection and estimation of model parameters. IFAC Proceedings Volumes, 39(2), 789-794.
Stribeck, R. (1902). The key qualities of sliding and roller bearings. Zeitschrift des Vereines Seutscher Ingenieure, 46(38), 1342-1348.
Sun, M., Wang, Z., Wang, Y., & Chen, Z. (2013). On Low-Velocity Compensation of Brushless DC Servo in the Absence of Friction Model. IEEE Transactions on Industrial Electronics, 60(9), 3897-3905.
Swevers, J., Al-Bender, F., Ganseman, C. G., & Projogo, T. (2000). An integrated friction model structure with improved presliding behavior for accurate friction compensation. IEEE Transactions on Automatic Control, 45(4), 675-686.
Tinga, T., & Loendersloot, R. (2014). Aligning PHM, SHM and CBM by understanding the physical system failure behaviour. Paper presented at the European Conference on the Prognostics and Health Management Society.
Udrescu, S.-M., & Tegmark, M. (2020). AI Feynman: A physics-inspired method for symbolic regression. Science Advances, 6(16), eaay2631.
Van Geffen, V. (2009). A study of friction models and friction compensation. In: Technische Universiteit Eindhoven Eindhoven (Holland.
Wang, D., Tsui, K.-L., & Miao, Q. (2018). Prognostics and Health Management: A Review of Vibration Based Bearing and Gear Health Indicators. IEEE Access, 6, 665-676.
Weijers, S. R., & Vanrolleghem, P. A. (1997). A procedure for selecting best identifiable parameters in calibrating activated sludge model no. 1 to full-scale plant data. Water science and technology, 36(5), 69-79.
Willem, L., Stijven, S., Vladislavleva, E., Broeckhove, J., Beutels, P., & Hens, N. (2014). Active learning to understand infectious disease models and improve policy making. PLoS Comput Biol, 10(4), e1003563.
Willett, P. K., Mathur, A., Cavanaugh, K. F., Pattipati, K. R., Willett, P. K., Galie, T. R., & Kirubarajan, T. (2001). Reasoning and modeling systems in diagnosis and prognosis. Paper presented at the Component and Systems Diagnostics, Prognosis, and Health Management.
Yoon, J. Y., & Trumper, D. L. (2014). Friction modeling, identification, and compensation based on friction hysteresis and Dahl resonance. Mechatronics, 24(6), 734-741.
Ian Wright, An engineer's guide to CNC turning centers (2017), accessed 9 June 2020. https://www.engineering.com/AdvancedManufacturing/ArticleID/14512/An-Engineers-Guide-to-CNC-Turning-Centers.aspx