簡易檢索 / 詳目顯示

研究生: 甯凱璘
Ning, Kai-Lin
論文名稱: 以BioWin模擬MBR實廠處理光電廢水及評估膠體性COD對硝化效能影響
Simulation of full-scale membrane bioreactor plants treating TFT-LCD wastewater in BioWin software and studying the effect of colloidal COD on Nitrification performance
指導教授: 黃良銘
Whang, Liang-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 159
中文關鍵詞: TFT-LCDMBRBioWin膠體性COD
外文關鍵詞: TFT-LCD, MBR, BioWin, Colloidal COD
相關次數: 點閱:101下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 薄膜液晶顯示器(Thin film transistor-Liquid crystal display, TFT-LCD)廢水廠以生物處理系統A/OO-MBR (anoxic Tank/aerobic Tank/ aerobic Tank-membrane bioreactor)處理主要進流為MEA (Monoethanolamine)及DMSO (Dimethyl sulphoxide)之含高濃度有機氮、有機硫廢水,經由長期實廠監測與BioWin模擬廢水廠,以進行除COD及除氮效能之評估。
    系統進流水TKN平均為200 mg-N/L、COD為1200 mg/L。經長期觀察,處理情形分為五時期,其COD去除率皆可達95%。前二期(O/OO-MBR,A/OO-MBR)硝化效果不良,TKN及TN去除率為50%及50%,F/M ratio為0.22 ± 0.1 kg-COD/kg-VSS-day。中間二期(O/OO-MBR,A/OO-MBR)硝化效能提升,除氮作用穩定,TKN及TN去除率為86%及76%。後時期(A/OO-MBR)進流水至缺氧槽及好氧槽比率為4,硝化效果良好,TKN及TN去除率為99%及85%。觀察含高F/M ratio (food to microorganism ratio)和高膠體性COD濃度對於硝化作用有影響,而硝化效能較為良好之條件為當F/M ratio低於0.2 kg-COD/kg-VSS-day和膠體性COD之COD及有機氮濃度分別低於200 mg/L及20 mgN/L。
    以螢光激發/發散矩陣(Fluorescence excitation emission matrix, FEEM)及高效能粒徑排除層析儀(High performance size exclusion chromatography, HPSEC)分析好氧槽之膠體性COD獲知,分子量大於106 Da物質為膠體性COD來源,類含碳碳雙鍵疏水性有機物為主要膠體性COD成份,分子量大於107 Da之類芳香烴蛋白物質影響硝化效能。
    以定量即時聚合酶鏈鎖反應(Quantitative real time polymerase chain reaction, qPCR)及末端限制酶片段長度多型性(Terminal restriction fragment length polymorphism, T-RFLP)獲知,好氧槽之Nitrosomonas europaea (219/270)及Nitrosomonas europaea (491/491)之優勢氨氧化菌(ammonium oxidizing bacteria, AOB)量達2×107 copy/mL以上時,硝化效能良好,此時槽內氨氮維持低濃度。
    以BioWin模擬廢水廠獲知,各時期COD與TKN去除率平均分別達95%及98%,A/OO-MBR時TN去除率為65%。以好氧槽之汙泥進行利用膠體性COD及汙泥為碳源之缺氧脫硝試驗獲知,膠體性COD及汙泥不被脫硝菌作為碳源利用。以厭氧氨氧化(ANAMMOX)反應試驗獲知,無發生ANAMMOX反應,而發生還原反應使亞硝酸鹽濃度下降快速並產生N2O。當實廠氨氧化菌行硝化反應產生亞硝酸鹽氮時,可立即發生還原反應,因而硝酸鹽氮累積少,總氮去除率較BioWin模擬結果高。以DMSO及MEA為碳源之脫硝方程式獲知,當進流COD濃度為1200 mg/L且完全作為碳源來源時,缺氧槽C/N比之計算理論值為3.4 mg-COD/mg-NO3--N以上才可脫硝作用完全。

    The chemical oxygen demand (COD) removal and nitrogen removal performance in a full-scale anoxic/aerobic/aerobic/membrane bioreactor (A/O/O/MBR) treating the stripper (dimethyl sulphoxide (DMSO) and monoethanolamine (MEA))-containing thin film transistor liquid crystal display (TFT-LCD) wastewater were investigated and compared from simulation by BioWin software. High food to microorganism ratio (F/M ratio) and colloidal COD situations have negative impacts on nitrification. Sufficient nitrogen removal was observed when F/M ratio is less than 0.2 kg-COD/kg-VSS-day and COD and organic nitrogen of colloidal COD are lower than 200 mg/L and 20 mgN/L, repectively. Fluorescence excitation emission matrix (FEEM) and high-pressure size exclusion chromatography (HPSEC) were employed to measure colloidal COD in aerobic tank. The compound of molecular weight higher than 106 Da is the main source of colloidal COD. High molecular weight (107 Da) Aromatic protein (AP)-like molecules have negative impact on nitrification performance. The quantitative real time polymerase chain reaction (qPCR) results showed that ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) abundance more than 5×107 copy/mL provided stable ammonia oxidation. In the full-scale MBR during good nitrogen removal period, the efficiency of removal in COD and total nitrogen were found to be 97% and 85%, as compared to 95% and 49% in BioWin simulation. The batch tests showed denitrifying bacteria cannot use colloidal COD or decayed sludge as carbon sources for denitrification. Even anaerobic ammonium oxidation (ANAMMOX) reaction was not observed, nitrite disappeared considerably presumably for nitrous oxide production.

    摘要 I Extended Abstract III 致謝 VI 目錄 VII 表目錄 X 圖目錄 XII 附錄目錄 XV 第一章 前言 1 1.1 研究緣起 1 1.2 研究目的 3 第二章 文獻回顧 5 2.1 TFT-LCD產業 5 2.1.1 製程程序 5 2.1.2 製程有機廢水來源與成份特性 8 2.1.3 乙醇胺(MEA)特性與降解機制 9 2.1.4 二甲基亞楓(DMSO)特性與降解機制 11 2.1.5 氫氧化四甲基胺(TMAH)特性與降解機制 14 2.2 生物除氮 17 2.2.1 氮循環與氮危害 17 2.2.2 生物除氮機制 20 2.2.3 硝化反應(Nitrification) 21 2.2.4 脫硝反應(Denitrification) 24 2.2.5 厭氧氨氧化反應(Anammox) 26 2.2.6 硝化菌種類 27 2.3 廢汙水生物除氮程序 32 2.3.1 生物除氮程序演變 32 2.3.2 ASM2d生物除氮程序 33 2.3.3 模擬軟體介紹 36 2.3.4 TFT-LCD製程有機廢水生物處理除氮程序 37 2.4 薄膜生物反應器(Membrane Bioreactor, MBR) 39 2.4.1 薄膜介紹及應用 39 2.4.2 薄膜阻塞及膠體性COD產生 42 2.4.3 膠體性COD組成成分 43 2.5 分子生物技術在生物程序中之應用 46 2.5.1 總DNA萃取 48 2.5.2 聚合酶鏈鎖反應(Polymerase Chain Reaction, PCR) 48 2.5.3 末端限制酶片段長度多型性分析(Terminal Restriction Fragment Length Ploymorphism, T-RFLP) 51 2.5.4 定量即時聚合酶鏈鎖反應(quantitative real time polymerase chain reaction, qPCR) 54 第三章 實驗材料與方法 59 3.1 實驗架構 59 3.2 實廠生物除氮處理流程概述 61 3.3 水質分析與使用儀器 65 3.3.1 一般水質分析 65 3.3.2 進流水成分分析 67 3.4 膠體性COD特性分析 68 3.4.1 高效能粒徑排除層析儀(HPSEC)分析方法 69 3.4.2 以HPSEC分析膠體性COD分子量分布範圍 72 3.4.3 螢光激發/發散陣列光譜儀(EEMs)分析方法 76 3.4.4 以FEEM分析膠體性COD之螢光圖譜 76 3.5 分子生物檢測技術 79 3.5.1 總DNA萃取 79 3.5.2 聚合酶鏈鎖反應(PCR) 79 3.5.3 末端限制酶片段長度多型性(T-RFLP) 81 3.5.4 定量即時聚合酶鏈鎖反應(qPCR) 84 3.6 廢水除氮程序模擬軟體 87 3.6.1 BioWin簡介 87 3.6.2 功能、模擬元件及監測項目介紹 87 3.6.3 模擬步驟及結果呈現 91 3.7 批次實驗設計 96 3.7.1 缺氧批次實驗 96 3.7.2 厭氧批次實驗 96 第四章 結果與討論 99 4.1 實廠生物除氮系統硝化效能評估 99 4.1.1 第一時期 O/OO MBR除氮系統 (day: 1-56) 100 4.1.2 第二時期 A/OO MBR除氮系統 (day: 70-217) 100 4.1.3 第三時期 O/OO MBR除氮系統 (day: 231-273) 101 4.1.4 第四時期 A/OO MBR除氮系統 (day: 287-428) 101 4.1.5 第五時期 A/OO MBR除氮系統 (day: 441-602) 101 4.1.6 整體實廠除氮效能評估 102 4.2 膠體性COD與硝化作用關係 105 4.2.1 以HPSEC分析實廠膠體性COD 108 4.2.2 以FEEM分析實廠膠體性COD 114 4.2.3 膠體性COD分析之綜合結果 116 4.3 氨氧化微生物族群與硝化作用關係 118 4.3.1 以qPCR分析微生物總量 118 4.3.2 以T-RFLP分析氨氧化微生物族群菌相 120 4.4 BioWin實廠模擬 122 4.4.1 建置處理流程 123 4.4.2 輸入設計資料 127 4.4.3 檢查模擬系統、警訊排除與模擬結果呈現 130 4.5 批次實驗 134 4.5.1 缺氧脫硝反應批次實驗 134 4.5.2 厭氧氨氧化反應批次實驗 136 4.6 DMSO與MEA產生之汙泥理論值 138 4.6.1 以MEA作為脫硝碳源產生之汙泥理論值 138 4.6.2 以DMSO作為脫硝碳源產生之汙泥理論值 139 4.6.3 實廠中MEA和DMSO產生之汙泥理論值 140 4.6.4 實廠生成汙泥理論量 141 第五章 結論與建議 143 5.1 結論 143 5.2 建議 145 參考文獻 147 附錄 157

    Ahn, Y.T., Kang, S.T., Chae, S.R., Lee, C.Y., Bae, B.U., Shin, H.S. 2007. Simultaneous high-strength organic and nitrogen removal with combined anaerobic upflow bed filter and aerobic membrane bioreactor. Desalination, 202(1-3), 114-121.
    Alex, J., Beteau, J.F., Copp, J.B., Hellinga, C., Jeppsson, U., Marsili-Libelli, S., Vanhooren, H. 1999. Benchmark for evaluating control strategies in wastewater treatment plants. Proceedings of the European Control Conference, Karlsruhe, Germany, August.
    Alvarez, L., Bricio, C., Blesa, A., Hidalgo, A., Berenguer, J. 2014. Transferable Denitrification Capability of Thermus thermophilus. Applied and environmental microbiology, 80(1), 19-28.
    Amann, R., Stromley, J., Devereux, R., Key, R., Stahl, D. 1992. Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Applied and environmental microbiology, 58(2), 614-623.
    Anthonisen, A., Loehr, R., Prakasam, T., Srinath, E. 1976. Inhibition of nitrification by ammonia and nitrous acid. Water Pollution Control Federation, 835-852.
    Anthony, C. 1982. The Biochemistry of methylotrophs: Academic Press, London, United Kingdom.
    APHA. 2004. Analytical Methods for Environmental Water Quality: International Atomic Energy Agency, Vienna, Austria
    Avaniss-Aghajani, E., Jones, K., Holtzman, A., Aronson, T., Glover, N., Boian, M., Brunk, C.F. 1996. Molecular technique for rapid identification of mycobacteria. Journal of clinical microbiology, 34(1), 98.
    Barnard, J. 1975. Biological nutrient removal without the addition of chemicals. Water Research, 9(5-6), 485-490.
    Bazylinski, D.A., Blakemore, R.P. 1983. Denitrification and Assimilatory Nitrate Reduction in Aquaspirillum magnetotacticum. Applied and environmental microbiology, 46(5), 1118-1124.
    Bock, E., Schmidt, I., Stüven, R., Zart, D. 1995. Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor. Archives of Microbiology, 163(1), 16-20.
    Bradbeer, C. 1965. The clostridial fermentations of choline and ethanolamine I. Preparation and properties of cell-free extracts. Journal of Biological Chemistry, 240(12), 4669-4674.
    Burrell, P.C., Keller, J., Blackall, L.L. 1998. Microbiology of a nitrite-oxidizing bioreactor. Applied and environmental microbiology, 64(5), 1878-1883.
    Cancilla, M., Powell, I., Hillier, A., Davidson, B. 1992. Rapid genomic fingerprinting of Lactococcus lactis strains by arbitrarily primed polymerase chain reaction with 32P and fluorescent labels. Applied and environmental microbiology, 58(5), 1772-1775.
    Chang, K.F., Yang, S.Y., You, H.S., Pan, J.R. 2008. Anaerobic treatment of tetra-methyl ammonium hydroxide (TMAH) containing wastewater. Semiconductor Manufacturing, IEEE Transactions on, 21(3), 486-491.
    Charlson, R.J., Lovelock, J.E., Andreae, M.O., Warren, S.G. 1987. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, 326(6114), 655-661.
    Chen, T.K., Ni, C.H., Chen, J.N. 2003. Nitrification-denitrification of opto-electronic industrial wastewater by anoxic/aerobic process. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 38(10), 2157-2167.
    Chen, W., Westerhoff, P., Leenheer, J.A., Booksh, K. 2003. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental science & technology, 37(24), 5701-5710.
    Cicek, N. 2003. A review of membrane bioreactors and their potential application in the treatment of agricultural wastewater. Canadian Biosystems Engineering, 45, 6.37-36.37.
    Cicek, N., Winnen, H., Suidan, M.T., Wrenn, B.E., Urbain, V., Manem, J. 1998. Effectiveness of the membrane bioreactor in the biodegradation of high molecular weight compounds. Water Research, 32(5), 1553-1563.
    Cinar, Daigger, G.T., P., S.G.t. 1998. Evaluation of IAWQ activated sludge model No. 2 using steady state data from four full scale wastewater treatment plants. Water Environment Research, 70(1216-1223).
    Coen, F., Vanderhaegen, B., Boonen, I. 1997. Improved design and control of industrial and municipal nutrient removal plants using dynamic models. Water Science and Technology, 35, 53-61.
    De Bont, J., Van Dijken, J., Harder, W. 1981. Dimethyl sulphoxide and dimethyl sulphide as a carbon, sulphur and energy source for growth of Hyphomicrobium S. Journal of general microbiology, 127(2), 315-323.
    Dermentzis, K., Davidis, A., Chatzichristou, C., Dermentzi, A. 2012. Ammonia removal from fertilizer plant effluents by a coupled electrostatic shielding based electrodialysis/electrodeionization process. Global NEST, 14(4), 468-476.
    Dionisi, H.M., Layton, A.C., Harms, G., Gregory, I.R., Robinson, K.G., Sayler, G.S. 2002. Quantification of Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and Nitrospira spp. from full-scale wastewater treatment plants by competitive PCR. Applied and environmental microbiology, 68(1), 245-253.
    Domínguez Chabaliná, L., Rodríguez Pastor, M., Rico, D.P. 2013. Daniel Prats. 2013. Characterization of soluble and bound EPS obtained from 2 submerged membrane bioreactors by 3D-EEM and HPSEC. Talanta, 115, 706-712.
    Dong, L.F., Nedwell, D.B., Underwood, G.J.C., Thornton, D.C.O., Rusmana, I. 2002. Nitrous Oxide Formation in the Colne Estuary, England: the Central Role of Nitrite. Applied and environmental microbiology, 68(3), 1240-1249.
    Drews, A. 2010. Membrane fouling in membrane bioreactors—characterisation, contradictions, cause and cures. Journal of membrane science, 363(1), 1-28.
    Drews, A., Mante, J., Iversen, V., Vocks, M., Lesjean, B., Kraume, M. 2007. Impact of ambient conditions on SMP elimination and rejection in MBRs. Water Research, 41(17), 3850-3858.
    Duan, L., Song, Y., Yu, H., Xia, S., Hermanowicz, S.W. 2014. The effect of solids retention times on the characterization of extracellular polymeric substances and soluble microbial products in a submerged membrane bioreactor. Bioresource technology, 163, 395-398.
    Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P., Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350-356.
    Fan, X.J., Urbain, V., Qian, Y., Manem, J. 1996. Nitrification and mass balance with a membrane bioreactor for municipal wastewater treatment. Water Science and Technology, 34(1), 129-136.
    Foglar, L., Briškia, F., Siposb, L., Vukovića, M. 2005. High nitrate removal from synthetic wastewater with the mixed bacterial culture. Bioresource Technology, 96(8), 879-888.
    Garnier, J., Billen, G., Cébron, A. 2007. Modelling nitrogen transformations in the lower Seine river and estuary (France): impact of wastewater release on oxygenation and N2O emission. Hydrobiologia, 588(1), 291-302.
    Germain, E., Nelles, F., Drews, A., Pearce, P., Kraume, M., Reid, E., Stephenson, T. 2007. Biomass effects on oxygen transfer in membrane bioreactors. Water Research, 41(5), 1038-1044.
    Ghafari, S., Hasan, M., Aroua, M.K. 2008. Bio-electrochemical removal of nitrate from water and wastewater—A review Bioresource Technology, 99, 3965-3974.
    Gong, Z., Yang, F., Liu, S., Bao, H., Hu, S., Furukawa, K. 2007. Feasibility of a membrane-aerated biofilm reactor to achieve single-stage autotrophic nitrogen removal based on Anammox. Chemosphere, 69(5), 776-784.
    Grady, C.P.L., Daigger, G.T., Lim., H.C. 1999. Biological wastewater treatment. Marcel Dekker, New York, United States of America.
    Groeneweg, J., Sellner, B., Tappe, W. 1994. Ammonia oxidation in nitrosomonas at NH3 concentrations near km: Effects of pH and temperature. Water Res, 28(12), 2561-2566.
    Hütter, M., Kramer-Schafhalter, A., Mayr, B. 2000. Integration of membrane technology in communal wastewater treatment: operation and cost analysis. European Water Management, 3(3), 33-42.
    Haldane, J.B.S., Monographs, M.A. 1930. Enzymes. Longmans, London.
    Henze, M., Gujer, W., Mino, T., Loosdrecht, M.v. 2000. Activated Sludge Models ASM1, ASM2, ASM2d and ASM3: International Water Association, 9.
    Her, N., Amy, G., Sohn, J., Gunten, U. 2008. UV absorbance ratio index with size exclusion chromatography (URI-SEC) as an NOM property indicator. Journal of Water Supply: Research & Technology-AQUA, 57(1).
    Hirano, K., Okamura, J., Taira, T., Sano, K., Toyoda, A., Ikeda, M. 2001. An efficient treatment technique for TMAH wastewater by catalytic oxidation. Semiconductor Manufacturing, IEEE Transactions on, 14(3), 202-206.
    Hudson, N., Baker, A., Reynolds, D. 2007. Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters—a review. River Research and Applications, 23(6), 631-649.
    Itokawa, H., Hanaki, K., Matsuo, T. 2001. Nitrous oxide production in high-loading biological nitrogen removal process under low COD/N ratio condition. Water Research, 35(3), 657-664.
    Jones, A., Turner, J. 1973. Microbial metabolism of amino alcohols. 1-Aminopropan-2-ol and ethanolamine metabolism via propionaldehyde and acetaldehyde in a species of Pseudomonas. Biochemical Journal, 134, 167-182.
    Judd, S., Judd, C. 2010. The MBR Book : Principles and Applications of Membrane Bioreactors for Water and Wastewater Treatment: Elsevier.
    Juretschko, S., Timmermann, G., Schmid, M., Schleifer, K.H., Pommerening-Röser, A., Koops, H.P., Wagner, M. 1998. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Applied and environmental microbiology, 64(8), 3042-3051.
    Keener, W.K., Arp, D.J. 1994. Transformations of aromatic compounds by Nitrosomonas europaea. Applied and environmental microbiology, 60(6), 1914-1920.
    Keltjens, J.T., Vogels, G.D. 1993. Conversion of methanol and methylamines to methane and carbon dioxide Methanogenesis, 253-303.
    Kino, K., Murakami-Nitta, T., Oishi, M., Ishiguro, S., Kirimura, K. 2004. Isolation of dimethyl sulfone-degrading microorganisms and application to odorless degradation of dimethyl sulfoxide. Journal of bioscience and bioengineering, 97(1), 82-84.
    Klemedtsson, L., Jiang, Q., Kasimir Klemedtsson, Å., Bakken, L. 1999. Autotrophic ammonium-oxidising bacteria in Swedish mor humus. Soil Biology and Biochemistry, 31(6), 839-847.
    Knapp, J.S., Jenkey, N.D., Townsley, C.C. 1996. The anaerobic biodegradation of diethanolamine by a nitrate reducing bacterium. Biodegradation, 7(3), 183-189.
    Knowles, G., Downing, A.L., Barrett, M. 1965. Determination of kinetic constants for nitrifying bacteria in mixed culture, with the aid of an electronic computer. Journal of general microbiology, 38(2), 263-278.
    Koeleman, J.G., Stoof, J., Biesmans, D.J., Savelkoul, P.H., Vandenbroucke-Grauls, C.M. 1998. Comparison of Amplified Ribosomal DNA Restriction Analysis, Random Amplified Polymorphic DNA Analysis, and Amplified Fragment Length Polymorphism Fingerprinting for Identification ofAcinetobacter Genomic Species and Typing ofAcinetobacter baumannii. Journal of clinical microbiology, 36(9), 2522-2529.
    Koito, T., Tekawa, M., Toyoda, A. 1998. A novel treatment technique for DMSO wastewater. Semiconductor Manufacturing, IEEE Transactions on, 11(1), 3-8.
    Koops, H.P., Pommerening Röser, A. 2001. Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. Issue FEMS Microbiology Ecology, 37(1), 1-9.
    Kraume, M., Drews, A. 2010. Membrane bioreactors in waste water treatment–Status and trends. Chemical engineering & technology, 33(8), 1251-1259.
    Kraume, M., Drews, A. 2010. Membrane Bioreactors in Waste Water Treatment - Status and Trends. Chemical Engineering & Technology, 33(8), 1251-1259.
    Laspidou, C.S., Rittmann, B.E. 2002. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Research, 36(11), 2711-2720.
    Lei, C.N., Whang, L.M., Chen, P.C. 2010. Biological treatment of thin-film transistor liquid crystal display (TFT-LCD) wastewater using aerobic and anoxic/oxic sequencing batch reactors. Chemosphere, 81(1), 57-64.
    Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G.W., Schleper, C. 2006. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature, 442(7104), 806-809.
    Lesjean, B., Rosenberger, S., Laabs, C., Jekel, M., Gnirss, R., Amy, G. 2005. Correlation between membrane fouling and soluble/colloidal organic substances in membrane bioreactors for municipal wastewater treatment. Water Science & Technology, 51(6-7), 1-8.
    Li, X., Gao, F., Hua, Z., Du, G., Chen, J. 2005. Treatment of synthetic wastewater by a novel MBR with granular sludge developed for controlling membrane fouling. Separation and Purification Technology, 46(1-2), 19–25.
    Liao, B., Allen, D., Droppo, I., Leppard, G., Liss, S. 2001. Surface properties of sludge and their role in bioflocculation and settleability. Water Research, 35(2), 339-350.
    Liu, S., Yang, F., Gong, Z., Su, Z. 2008. Assessment of the positive effect of salinity on the nitrogen removal performance and microbial composition during the start-up of CANON process. Applied Microbiology and Biotechnology, 80(2), 339-348.
    Liu, W.T., Marsh, T.L., Cheng, H., Forney, L.J. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Applied and environmental microbiology, 63(11), 4516-4522.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265-275.
    Loy, A., Lehner, A., Lee, N., Adamczyk, J., Meier, H., Ernst, J., Wagner, M. 2002. Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Applied and environmental microbiology, 68(10), 5064-5081.
    Ludzack, F., Ettinger, M. 1962. Controlling operation to minimize activated sludge effluent nitrogen. Journal of the Water Pollution Control Federation, 34(9), 920-931.
    Manem, J., Trouve, E., Beaubien, A., Huyard, A., Urbain, V. 1993. Membrane bioreactor for urban and industrial wastewater treatment: Recent Advances. 66th Annual Conference, Anaheim, California, 51-59.
    Martens-Habbena, W., Berube, P.M., Urakawa, H., Torre, J.R.d.l., Stahl, D.A. 2009. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature, 461(7266), 976-979.
    McCarty, P.L. 2007. Thermodynamic electron equivalents model for bacterial yield prediction: modifications and comparative evaluations. Biotechnology and Bioengineering, 97(2), 377-388.
    Monod, J. 1949. The growth of bacterial cultures. Annual Review of Microbiology, 3(1), 371-394.
    Monteith, H.D., Bridle, T.R., Sutton, P.M. 1979. Evaluation of industrial waste carbon sources for biological denitrification. Environment Canada, Environmental Protection Service, 79(9).
    Mulder, A., Graaf, A.A.v.d., Robertson, L.A., Kuenen, J.G. 1995. Anaerobic ammonium oxidation discovered in a denitrifying fluidized-bed reactor. FEMS Microbiology Ecology, 16, 177-183.
    Muller, E., Stouthamer, A., van Verseveld, H.W.v., Eikelboom, D. 1995. Aerobic domestic waste water treatment in a pilot plant with complete sludge retention by cross-flow filtration. Water Research, 29(4), 1179-1189.
    Murakami-Nitta, T., Kirimura, K., Kino, K. 2003. Degradation of dimethyl sulfoxide by the immobilized cells of Hyphomicrobium denitrificans WU-K217. Biochemical Engineering Journal, 15(3), 199-204.
    Murakami-Nitta, T., Kurimura, H., Kirimura, K., Kino, K., Usami, S. 2002. Continuous degradation of dimethyl sulfoxide to sulfate ion by Hyphomicrobium denitrificans WU-K217. Journal of bioscience and bioengineering, 94(1), 52-56.
    Muyzer, G., De Waal, E.C., Uitterlinden, A.G. 1993. rofiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and environmental microbiology, 59(3), 695-700.
    Nah, Y., Ahn, K., Yeom, I. 2000. Nitrogen removal in household wastewater treatment using an intermittently aerated membrane bioreactor. Environmental technology, 21(1), 107-114.
    Narrod, S.A., Jakoby, W.B. 1964. Metabolism of ethanolamine an ethanolamine oxidase. Journal of Biological Chemistry, 239(7), 2189-2193.
    Okabe, S., Oozawa, Y., Hirata, K., Watanabe, Y. 1996. Relationship between population dynamics of nitrifiers in biofilms and reactor performance at various C: N ratios. Water Research, 30(7), 1563-1572.
    Park, H.D., Noguera, D.R. 2004. Evaluating the effect of dissolved oxygen on ammonia-oxidizing bacterial communities in activated sludge. Water Research, 38(14), 3275-3286.
    Park, H.D., Regan, J.M., Noguera, D.R. 2002. Molecular analysis of ammonia-oxidizing bacterial populations in aerated-anoxic Orbal processes. Water Science and Technology, 46(1-2), 273-80.
    Park, H.D., Wells, G.F., Bae, H., Criddle, C.S., Francis, C.A. 2006. Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Applied and environmental microbiology, 72(8), 5643-5647.
    Park, S.J., Yoon, T.I., Bae, J.H., Seo, H.J., Park, H.J. 2001. Biological treatment of wastewater containing dimethyl sulphoxide from the semi-conductor industry. Process Biochemistry, 36(6), 579-589.
    Pons, M.N., Spanjers, H., Jeppsson, U. 1999. Towards a benchmark for evaluating control strategies in wastewater treatment plants by simulation. Computers & Chemical Engineering, 23, 403-406.
    Poxon, T.L., Darby, J.L. 1997. Extracellular polyanions in digested sludge: measurement and relationship to sludge dewaterability. Water Research, 31(4), 749-758.
    Purkhold, U., Pommerening-Röser, A., Juretschko, S., Schmid, M., Koops, H., Wagner, M. 2000. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Applied and environmental microbiology, 66(12), 5368-5382.
    Ramesh, A., Lee, D., Lai, J. 2007. Membrane biofouling by extracellular polymeric substances or soluble microbial products from membrane bioreactor sludge. Applied microbiology and biotechnology, 74(3), 699-707.
    Ramesh, A., Lee, D.J., Hong, S. 2006. Soluble microbial products (SMP) and soluble extracellular polymeric substances (EPS) from wastewater sludge. Applied Microbiology and Biotechnology, 73(1), 219.
    Randall, C., Pattarkine, V., McClintock, S. 1992. Nitrification kinetics in single-sludge biological nutrient removal activated sludge systems. Water Science & Technology, 25(6), 195-214.
    Regan, J.M., Harrington, G.W., Noguera, D.R. 2002. Ammonia- and Nitrite-Oxidizing Bacterial Communities in a Pilot-Scale Chloraminated Drinking Water Distribution System. Applied and environmental microbiology, 68(1), 73-81.
    Rijn, J.v., Tal, Y., Schreier, H.J. 2006. Denitrification in recirculating systems: Theory and applications. Denitrification in recirculating systems. Theory and applications, Aquacultural Engineering, (34), 364-376.
    Robertson, L.A., Van Niel, E.W., Torremans, R.A., Kuenen, J.G. 1988. Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha. Applied and environmental microbiology, 54(11), 2812-2818.
    Rotthauwe, J.H., Witzel, K.P., Liesack, W. 1997. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied and environmental microbiology, 63(12), 4704-4712.
    Saïd, M., Ezzahra, A.F., Jamal, A., Mohammed, R., Omar, A. 2014. Heterotrophic denitrification by Gram-positive bacteria: Bacillus cereus and Bacillus tequilensis. International Journal of Scientific and Research Publications, 4(4).
    Schalk, J., De Vries, S., Kuenen, J.G., Jetten, M.S.M. 2000. Involvement of a novel hydroxylamine oxidoteductase in anaerobic ammonium oxidation. Biochemistry, 39, 5405-5412.
    Schmidt, I., Bock, E. 1997. Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha. Archives of Microbiology, 167(2-3), 106-111.
    Schmidt, I., Sliekers, O., Schmid, M., Bock, E., Fuerst, J., Kuenen, J.G., Strous, M. 2003. New concepts of microbial treatment processes for the nitrogen removal in wastewater. FEMS microbiology reviews, 27(4), 481-492.
    Sha, D., Chen, P., Chen, Y.-H. 2008. The strategic fit of supply chain integration in the TFT-LCD industry. Supply Chain Management: An International Journal, 13(5), 339-342.
    Smith, C., Osborn, A. 2009. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiology Ecology, 67(1), 6-20.
    Smith, P., Coackley, P. 1984. Diffusivity, tortuosity and pore structure of activated sludge. Water Research, 18(1), 117-122.
    Stein, L.Y., Arp, D.J. 1998. Ammonium Limitation Results in the Loss of Ammonia-Oxidizing Activity in Nitrosomonas europaea. Applied and environmental microbiology, 64(4), 1514-1521.
    Stenstrom, M.K., Song, S.S. 1991. Effects of oxygen transport limitation on nitrification in the activated sludge process. Water Pollution Control Federation, 63(208), 208-219.
    Stephenson, T., Brindle, K., Judd, S., Jefferson, B. 2000. Membrane bioreactors for wastewater treatment. Water Science and Technology: International Water Association, London.
    Stouthamer, A.H. 1988. Dissimilatory reduction of oxidized nitrogen compounds. Biology of anaerobic microorganisms, 245-303.
    Strous, M., Heijnen, J.J., Kuenen, J.G., Jetten, M.S.M. 1998. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Applied Microbiology and Biotechnology, 50, 589-596.
    Suminoa, T., Isakaa, K., Ikutaa, H., Saikib, Y., Yokotab, T. 2006. Nitrogen removal from wastewater using simultaneous nitrate reduction and anaerobic ammonium oxidation in single reactor. Bioscience and Bioengineering, 102(4), 346-351.
    Suwa, Y., Imamura, Y., Suzuki, T., Tashiro, T., Urushigawa, Y. 1994. Ammonia-oxidizing bacteria with different sensitivities to (NH4)2SO4 in activated sludge. Water Research, 28(7), 1523-1532.
    Suylen, G., Kuenen, J. 1986. Chemostat enrichment and isolation of Hyphomicrobium EG. Antonie van Leeuwenhoek, 52(4), 281-293.
    Tsai, B.N., Chang, C.H., Lee, D.J. 2008. Fractionation of soluble microbial products (SMP) and soluble extracellular polymeric substances (EPS) from wastewater sludge. Environmental technology, 29(10), 1127-1138.
    Urakami, T., Araki, H., Oyanagi, H., Suzuki, K.I., Komagata, K. 1990. Paracoccus aminophilus sp. nov. and Paracoccus aminovorans sp. nov., Which Utilize N,N-Dimethylformamide. International Journal of Systematic Bacteriology, 40(3), 287-291.
    USEPA. 1993. Nitrogen Control: United States Environmental Protection Agency.
    Visvanathan, C., Aim, R.B., Parameshwaran, K. 2000. Membrane separation bioreactors for wastewater treatment. Critical Reviews in Environmental Science and Technology, 30(1), 1-48.
    Wang, Z., Wu, Z., Tang, S. 2009. Characterization of dissolved organic matter in a submerged membrane bioreactor by using three-dimensional excitation and emission matrix fluorescence spectroscopy. Water Research, 43(6), 1533-1540.
    Watson, S.W. 1971. Taxonomic Considerations of the Family Nitrobacteraceae Buchanan Requests for Opinions. International Journal of Systematic Bacteriology, 21(3), 254-270.
    Watson, S.W., Bock, E., Valois, F.W., Waterbury, J.B., Schlosser, U. 1986. Nitrospira marina gen. nov. sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium. Archives of Microbiology, 144(1), 1-7.
    Whang, L.M., Wu, Y.J., Lee, Y.C., Chen, H.W., Fukushima, T., Chang, M.Y., Chang, B. 2012. Nitrification performance and microbial ecology of nitrifying bacteria in a full-scale membrane bioreactor treating TFT-LCD wastewater. Bioresource Technology, 122, 70-77.
    Whang, L.M., Yang, Y.F., Huang, S.J., Cheng, S.S. 2008. Microbial ecology and performance of nitrifying bacteria in an aerobic membrane bioreactor treating thin-film transistor liquid crystal display wastewater. Water Science & Technology, 58(12).
    Winogradsky, S. 1892. Contributions a la morphologie des organismes de la nitrification. Arch. Sci. Biol. Archives des Sciences Biologiques, 1, 87-137.
    Wu, Y.J., Whang, L.M., Chang, M.Y., Fukushima, T., Lee, Y.C., Cheng, S.S., Tsai, T.Y. 2013. Impact of food to microorganism (F/M) ratio and colloidal chemical oxygen demand on nitrification performance of a full-scale membrane bioreactor treating thin film transistor liquid crystal display wastewater. Bioresource Technology, 141, 35-40.
    Xie, W.M., Ni, B.J., Seviour, T., Sheng, G.P., Yu, H.Q. 2012. Characterization of autotrophic and heterotrophic soluble microbial product (SMP) fractions from activated sludge. Water Research, 46(19), 6210-6217.
    Zhang, Y., Zhang, H., Chu, HuaQiang, Z., Fei, X., Zhao, Y.Y. 2013. Characterization of dissolved organic matter in a dynamic membrane bioreactor for wastewater treatment. Chinese Science Bulletin, 58(15), 1717-1724.
    李淑娟(2010),「市鎮汙水處理廠厭氧消化系統操作參數最佳化之研究」,國立台北科技大學環境工程管理研究所碩士論文。
    李雅菁(2010),「針對TFT-LCD製程廢水實廠進行硝化效能評估與氨氧化菌群生態之研究」,國立成功大學環境工程學系碩士論文。
    李遠光、蔣建軍(2005),「活性汙泥數學模型的研究進展」,上海石油化工股份有限公司腈綸事業部。
    阮文昌(2003),「薄膜生物反應槽積垢特性之研究」,朝陽科技大學環境工程與管理系碩士論文。
    周連智(2012),「應用流體化結晶床處理含磷廢水之研究—以TFT-LCD廠為例」,國立中央大學環境工程研究所碩士論文。
    周裕然(2002),「多段進流去氮除磷系統穩動態處理及控制特性之研究」,國立中央大學環境工程研究所博士論文。
    林宏霖(2006),「探討生物分解光電產業製程廢水之反應動力特性研究」,國立成功大學環境工程學系碩士論文。
    林茗儀(2005),「活性汙泥脫硝基因及脫硝菌多樣性之研究」,私立中原大學土木工程學系碩士論文。
    南科管理局(2012),「南部科學工業園區台南園區暨高雄園區汙水下水道容許標準暨收費標準。
    張明玉(2013),「薄膜生物反應器實廠處理光電廢水之評估」,國立成功大學環境工程學系碩士論文。
    張婷婷(2009),「除氮系統中與無氧氨氧化菌共存之微生物組成分析」,國立中興大學環境工程學研究所碩士論文。
    陳廷光、陳重男、倪振鴻(2002),「GREEN MEMBIOR®生物薄膜程序處理TFT-LCD製程有機廢水之研究」,第二十七屆廢水處理技術研討會論文。
    陳怡忻(2014),「膠體性COD對MBR實廠處理光電廢水硝化效能影響之研究」,國立成功大學環境工程學系碩士論文。
    黃淑君(2006),「不織布薄膜反應槽好氧生物分解TFT-LCD製程有機廢水程序功能及生態變化之研究」,國立成功大學環境工程學系碩士論文。

    下載圖示 校內:2020-08-05公開
    校外:2020-08-05公開
    QR CODE