簡易檢索 / 詳目顯示

研究生: 鄭天倪
Cheng, Tien-Ni
論文名稱: 奈米碳管儲氫量理論之建構與優化
Engineering Modeling and Optimization for Motor-used Nanotube Hydrogen Storage Systems
指導教授: 賴新一
Lai, Hsin-Yi Steven
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 118
中文關鍵詞: 奈米碳管儲氫分子動力學
外文關鍵詞: carbon nanotube, molecular dynamics, hydrogen storage
相關次數: 點閱:108下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氫氣是一種可再生的環保能源,經由燃料電池(fuel cell)不但可產生出電能、熱、和水,轉換效率也高且無污染。但目前這項技術仍存在著許多瓶頸,其中之一就是在攜帶型電力系統的發展上,仍然缺乏一種安全、便利、效率高、質量輕的儲氫媒介,對於氫能源的發展有很大的阻礙。根據文獻記載奈米碳管是較具發展潛力的儲氫材料。目前雖有一些文獻記載了其儲氫特性的研究,但尚無完整的理論可以推導並印證其可靠度,因而導致實驗的可重複性尚低,不同的實驗結果易產生不同的誤差,阻礙了相關領域的研究進展。為了解決此困境,應用分子動力學架構一套理論,藉以描述奈米碳管的吸氫行為是本文研究的主要方向。

    本研究以微觀分子力學模型為基礎,探討奈米碳管儲氫過程之作用機制,並建構一套完整的儲氫模擬模型。首先採用分子力學研究粒子間非鍵節力作用情形,並完成粒子運動軌跡之推導,藉由分子動力學模擬的方式掌握在特定環境以及碳管結構下,氫氣流場於系統中的運動狀態,觀察在穩定狀態下所存在的氫氣分子數量,以了解在儲氫過程中碳管之儲氫機制與總體的儲氫能力。最後,將文獻實驗資料與微觀模擬結果相互印證,並以印證後可靠之模型進行儲氫能力之預估以及系統優化等應用。

    由本文所建構的奈米碳管儲氫模型所估算出的結果,與文獻中模擬結果趨勢相同,且誤差在可接受範圍內。此外為了找出最大的儲氫量,本文應用遺傳演算法架構出最佳化儲氫容量法則,不但對於實際應用上有所幫助,更可以提供未來設計上一個明確的方向。唯若要套用在實際的實驗中,尚需考慮到壓力對於碳管束的影響、碳管試片純化的程度…等問題,才能夠達到較佳的可靠性。

    Hydrogen is expected to become an important energy carrier in the 21st century, supplementing electricity as a non-polluting method of delivering energy. Hydrogen usage is particularly beneficial to the transportation sector, since hydrogen can be stored onboard a moving vehicle more readily than electricity. Zero emission electric or hydrogen vehicles would help to clean the air we breathe and reduce our dependence on foreign resources. However, the most important of which is lack of safe and efficient ways of hydrogen storage. Targets for gravimetric (6.5wt%) and volumetric (62%) density for storage and transportation were recently standardized in the Department of Energy US as a “DOE Hydrogen Plan”. Several research groups have focused on experimental studies on hydrogen adsorption by using graphitic sorbents. Notwithstanding there are no existing adsorbents that satisfy the DOE target so far. Carbon Nanotube are now considered as the most promising hydrogen store system for future use. Some research groups have reported high values of the hydrogen content in the nanotubes but as a rule they could not be confirmed independently. It should be stressed that the progress in this domain is hampered by its novelty and poor reproducibility or misinterpretation of the results obtained by various research groups. In order to solve this problem, model calculation of physisorption by the nanotubes were of great urgency.

    In this paper, the hydrogen storage in carbon nanotube is studied by molecular dynamics simulation. The particle-particle interactions between hydrogen are modeled with Lennard-Jones potential, and the interactions between hydrogen molecules are well modeled by the three-parameter potential function of Williams. This project will establish a molecular model for hydrogen storage, which shall integrate intermolecular reaction forces, external operating forces and membrane resistance forces together. The microscopic molecular dynamics approach will be used to characterize the behaviors of hydrogen storage processes. The results are further verified by experimental data.

    Good agreement between the computed solutions and existing data obtained from the literature indicates that the theory and modeling procedure that are presented in this paper is theoretically sound and practically applicable for the analysis of nanotube hydrogen storage systems. They can be used not only to compute the hydrogen storage capacity with a designated response characteristic, but also to provide a clear direction in further studies in design practice.

    中文摘要………………………………………………I 英文摘要………………………………………………II 目錄……………………………………………………IV 圖目錄…………………………………………………VII 表目錄…………………………………………………X 符號說明………………………………………………XI 第一章 緒論 ………………………………………………1 1.1 研究動機……………………………………1 1.2 研究目的……………………………………5 1.3 研究方法及步驟……………………………6 1.4 章節瀏覽……………………………………7 第二章 文獻回顧與研究流程 ……………………………9 2.1 儲氫媒介發展之文獻回顧…………………9 2.2 奈米碳管儲氫性質文獻回顧 ……………12 2.3 奈米碳管儲氫模擬文獻回顧 ……………15 2.4 本研究之基本假設與研究流程 …………18 2.4.1 基本假設 ……………………18 2.4.2 研究流程 ……………………19 第三章 奈米碳管儲氫系統模擬模型之建構……………22 3.1 儲氫系統粒子間作用力與勢能模型 ……23 3.1.1 碳原子與氫分子間的勢能模型 ………24 3.1.2 氫分子間的勢能模型 ………27 3.1.3 由作用力推導流場粒子之動力模 型 ……31 3.2 儲氫系統充氣過程與穩態判別 …………34 3.2.1 系統平衡狀態的趨近 ………34 3.2.2 系統平衡狀態的判別 ………37 3.3 奈米碳管儲氫模擬系統之建構 …………40 3.3.1 奈米碳管結構之建模 ………40 3.3.2 氫氣分子初始狀態與模型 …45 3.3.3 奈米碳管系統儲氫理論之建構 …………49 3.4 模擬流程規劃與系統狀態之監控 ………52 3.4.1 模擬流程規劃 ………………52 3.4.2 系統狀態之監控 ……………56 3.5 奈米碳管儲氫理論模型最佳化 …………67 3.5.1 最佳化演算法則理論基礎 …67 3.5.2 儲氫模擬操作參數優化方法之建構………71 第四章 分子動力動態模擬與結果之印證………………77 4.1 理論模擬結果與文獻資料之比對 ………77 4.2 奈米碳管結構因素影響之探討 …………86 4.2.1 不同種類奈米碳管儲氫特性之研究………87 4.2.2 孔徑及間距對於單位重量氫容量的影響…92 4.2.3 孔徑及間距對於單位體積氫容量的影響…99 4.3儲氫模擬操作參數優化之應用…………102 4.3.1 應用一:最佳單位重量儲氫量的設計 …102 4.3.2 應用二:攜帶型儲氫系統之設計 ………108 第五章 結論與建議……………………………………111 5.1 結論 ……………………………………111 5.2 建議 ……………………………………113 參考文獻 ………………………………………………115

    1.Darkrim, F., and Levesque, D., “Monte Carlo Simulations of Hydrogen Adsorption in Single-Walled Carbon Nanotubes,” Journal of Chemical Physics, Vol. 109, pp. 4981, 1998.

    2.Darkrim, F., Vermesse, J., Malbrunot P., and Levesque, D., “Monte Carlo Simulations of Nitrogen and Hydrogen Physisorption at High Pressures and Room Temperature. Comparison With Experiments,” Journal of Chemical Physics, Vol. 110, pp. 4020, 1999.

    3.Darkrim, F., and Levesque, D., “High Adsorptive Proerty of Opened Carbon Nanotubes at 77 K,” Journal of Physical Chemistry B, Vol. 104, pp. 6773, 2000.

    4.Darkrim, F.L., Malbrunot, P., and Tartaglia, G.P., “Review of Hydrogen Storage by Adsorption in Carbon Nanotubes,” International Journal of Hydrogen Energy, Vol. 27, pp. 193, 2002.

    5.Dillon, A.C., Jones, K.M., Bekkedahl, T.A., Kiang, C.M., Bethune, D.S., and Heben, M.J., “Storage of Hydrogen in Single-Walled Carbon Nanotubes,” Nature, Vol.386, pp. 377, 1997.

    6.Dodziuk, H., and Dolgons, G., “Molecular Modeling Study of Hydrogen Storage in Carbon Nanotubes,” Chemical Physics Letters, Vol. 356, pp. 79, 2002.

    7.Ebbesen, T.W., Carbon Nanotubes : Preparation and Properties, CRC Press, 1997.

    8.Frenkel, D., and Smit, B., Understanding Molecular Simulation : from Algorithms to Applications, Academic Press, 1996.

    9.Gu, C., Gao, G.H., Yu, Y.X., and Mao, Z.Q., ”Simulation Study of Hydrogen Storage in Single Walled Carbon Nanotubes,” International Journal of Hydrogen Energy, Vol. 26, pp. 691, 2001.

    10.Gu, C., Gao, G.H., Yu, Y.X., and Nitta, T., “Simulation for Separation of Hydrogen and Carbon Monoxide by Adsorption on Single-Walled Carbon Nanotubes,” Fluid Phase Equilibria, Vol. 194, pp. 297, 2002.

    11.Haile, J.M., Molecular Dynamics Simulation: Elementary Methods, Wiley, 1992.

    12.Hoover, W.G., Molecular Dynamics, Springer-Verlag, 1986.

    13.Iijima, S., “Helical Microtubes of Graphitic Carbon,” Nature, Vol. 354, pp. 56, 1991.

    14.Lamari, M., Aoufi A., and Malbrunot, P., “Thermal Effects in Dynamic Storage of Hydrogen by Adsorption,” Environmental and Energy Engineering, Vol. 46, pp. 632, 2000.

    15.Ma, Y., Xia, Y., Zhao, M., and Ying, M., “Structure of Hydrogen Molecules in Single-Walled Carbon Nanotubes,” Chemical Physics Letters, Vol. 357, pp. 97, 2002.

    16.Pradhan B.K., Sumanasekera, G.U., Adu, K.W. Romero, H.E., Williams, K.A., and Eklund, P.C., “Experimental Probes of the Molecular Hydrogen-Carbon Nanotube Interaction,” Physica B, Vol. 323, pp. 115, 2002.

    17.Ruthven, D.M., Principles of Adsorption and Adsorption processes, Wiley, 1984.

    18.Silvera I.F., and Goldman V.V., “The Isotropic Intermolecular Potential for H2 and D2 in The Solid and Gas Phases,” Journal of Chemical Physics, Vol. 69, pp. 4209, 1978.

    19.Simonyan, V.V., Diep, P., and Johnson J.K., “Molecular Simulation of Hydrogen Adsorption in Charged Single-Walled Carbon Nanotubes,” Journal of Chemical Physics, Vol. 111, pp. 9778, 1999.

    20.Simonyan, V.V., and Johnson, J.K., “Hydrogen Storage in Carbon Nanotubes and Graphitic Nanofibers,” Journal of Alloys and Compounds, Vol. 330, pp. 659, 2002.

    21.Takahashi H., Nakamura, A., and Nitta, T., “Effect of the Shape of Simulation Box on the Van Der Waals Loop of Lennard-Jones Fluid,” Chemical Physics Letters, Vol. 282, pp. 128, 1998.

    22.Vermesse, J., and Levesque, D., “Monte Carlo Simulations of the Adsorption of Rare Gases at High Pressures,” Journal of Chemical Physics, Vol. 101, pp. 9063, 1994.

    23.Vermess, J., and Levesque, D., “Simulations of Adsorption on Microporous Interfaces,” Molecular Physics, Vol. 77, pp. 837, 1992.

    24.Wang, Q., and Johnson, J.K., “Computer Simulations of Hydrogen Adsorption on Graphite Nanofibers,” The Journal of Physical Chemistry B, Vol. 103, pp. 277, 1999.

    25.Wang, Q., and Johnson, J.K., “Molecular Simulation of Hydrogen Adsorption in Single-Walled Carbon Nanotubes and Idealized Carbon Slit Pores,” Journal of Chemical Physics, Vol. 110, pp. 577, 1999.

    26.Wang, Q., and Johnson, J.K., “Optimization of Carbon Nanotube Arrays for Hydrogen Adsorption,” Journal of Physical Chemistry B, Vol. 103, pp. 4819, 1999.

    27.Williams, K.A., and Eklund, P.C., “Monte Carlo Simulations of H2 Physisorption in Finite-Diameter Carbon Nanotube Ropes,” Chemical Physics Letters, Vol. 320, pp. 352, 2000.

    28.Ye, Y., Ahn, C.C., Witham, C., Fultz, B., Liu, J., Rinzler, A.G., Colbert, D., Smith, K.A., and Smalley, R.E., “Hydrogen Adsorption and Cohesive Energy of Single-Walled Carbon Nanotubes,” Applied Physics Letters, Vol. 74, pp. 2307, 1999.

    29.Züttel ,A., Sudan, P., Mauron, Ph., Kiyobayashi, T., Emmenegger, Ch., and Schlapbach, L., “Hydrogen Storage in Carbon Nanostructures,” International Journal of Hydrogen Energy, Vol. 27, pp. 203, 2002.

    30.Züttel ,A., Nützenadel, P., Sudan, P., Mauron, Ph., Emmenegger, Ch., Rentsch, S., Schlapbach, L., Weidenkaff, A., and Kiyobayashi, T., “Hydrogen Sorption by Carbon Nanotubes and Other Carbon Nanostructures,” Journal of Alloys and Compounds, Vol. 330, pp. 676, 2002.

    31.經濟部能源委員會, 台灣電力公司主辦, 燃料電池論文集, 經濟部能源委員會, 1999.

    32.周鵬程, 遺傳演算法原理與應用─活用Matlab, 全華, 2002.

    33.王宏達, “奈米碳管的成長與分析,” 國立成功大學化學工程系碩士論文, 2001.

    34.劉昇鑫, “電流變流體微觀結構與檢切特性研究,” 國立成功大學機械工程系碩士論文, 2000.

    35.陳道隆, “以分子動力學研究奈米級為結構之拉伸、壓縮、扭轉變形機制, ”國立成功大學機械工程系碩士論文, 2001.

    36.謝淑旦, “遺傳演算法在最小成本機械加工係數選擇問題之應用,” 高雄應用科技大學學報, 第三十期, pp. 327, 2000.

    下載圖示 校內:2004-07-15公開
    校外:2004-07-15公開
    QR CODE