| 研究生: |
陳冠倫 Chen, Kuan-Lun |
|---|---|
| 論文名稱: |
不同Ni/Zn比例對於鎳鋅鐵氧-鐵酸鉍複合材料磁電性質影響之研究 The effects of different Ni/Zn ratios on the magnetoelectric properties of NixZn1-xFe2O4-BiFeO3 composites |
| 指導教授: |
齊孝定
Qi, Xiao-Ding |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 多鐵性 、磁電 、複合材料 、BiFeO3 、NixZn1-xFe2O4 |
| 外文關鍵詞: | Multiferroic, magnetoelectric, composites, BiFeO3, NixZn1-xFe2O4 |
| 相關次數: | 點閱:114 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗研究主要使用兩種方法合成磁電複合材料,其一使用熱壓法製備磁電複合塊材;其二使用磁控濺鍍法濺鍍磁電複合薄膜,其中研究的塊材與薄膜樣品,分別表示如下(i)BiFeO3-Ni0.5Zn0.5Fe2O4磁電複合塊材;(ii) BiFeO3-NixZn1-xFe2O4/LaNiO3/Si(x=0.3、0.5、0.7)磁電複合薄膜。
磁電複合塊材中的BiFeO3與Ni0.5Zn0.5Fe2O4分別是使用水熱法和固相燒結法製備,合成後的兩個材料再以熱壓法壓成複合塊材,此磁電複合塊材屬於2-2type對接方式,分析樣品後發現在熱壓前後複合塊材有內應變和晶粒大小的改變,最後造成此磁電複合塊材在零偏壓場下具有磁電係數αE=9.9mV/Oe.cm,在有外加DC偏壓磁場下具有磁電係數αE=11.7mV/Oe.cm。
磁電複合薄膜BiFeO3-NixZn1-xFe2O4 (x=0.3、0.5、0.7)利用雙靶共濺鍍的方式,沉積在LaNiO3/Si上,LaNiO3為底電極和緩衝層,此磁電複合薄膜屬於0-3type的對接方式,磁性量測後發現不同鎳鋅比例的磁電複合薄膜均具有明顯的磁交換偏置,且磁電複合薄膜BiFeO3-NixZn1-xFe2O4 (x=0.3、0.5、0.7)在當x=0.3時具有最大的飽和磁化量Ms=788.16emu/cc。磁電係數在零偏壓場下,當x=0.3時,在共振頻率下磁電係數有最大值αE=1531mV/cm.Oe;當x=0.5時,在共振頻率下磁電係數有最大值αE=979mV/cm.Oe,當x=0.7時,在共振頻率下磁電係數有最大值αE=511mV/cm.Oe。在有外加偏壓場的情況下當x=0.3時,在共振頻率下磁電係數有最大值αE=1787mV/cm.Oe;當x=0.5時,在共振頻率下磁電係數有最大值αE=1034mV/cm.Oe,當x=0.7時,在共振頻率下磁電係數有最大值αE=582mV/cm.Oe。接著探討BiFeO3-Ni0.3Zn0.7Fe2O4複合薄膜兩相比為62:38與51:49的磁電係數,兩相比為62:38的磁電複合薄膜之飽和磁化量和磁電係數均大於51:49。
Bulk samples and thin films of BiFeO3 (BFO)NixZn1-xFe2O4 (NZFO, x=0.30.7) composites were prepared by hot-pressing and RF magnetron sputtering, respectively. One of the aims was to study the effects of different Ni/Zn ratio on the magnetoelectric (ME) property of the BFONZFO composites. Thin films were grown on the LaNiO3 (LNO) buffered Si substrates by co-sputtering from two individual targets of BFO and NZFO. The results showed that the highest ME coefficients were achieved with the BFONZFO films of x=0.3, which were measured to be 1531 and 1787 mV/cmOe at 10 kHz without and with a DC magnetic bias of 1000 Oe, respectively. The ME coefficients were measured vertically from the conductive LNO buffer to film surface. The x=0.3 composite films also showed the highest magnetization of 788.2 emu/cc. For the bulk composites, NZFO thin disks were first synthesized by solid state sintering, while BFO disks were cold-pressed from the hydrothermal synthesized powders of a pure phase. The two disks were then hot-pressed together under the pressure of 4000 kg/cm2 at 200 C with silver epoxy painted at the interface. The ME coefficients of the bulk BFONZFO composites were far smaller than the films, which were typically in the order of 10 mV/cmOe. A part of the reason for the far smaller ME coefficient might be attributed to the inaccurate thickness used for the calculation. The effective thickness that had the contribution to the ME coupling might be far smaller than the sample thickness, which was typically 0.8 mm compared to the films of 300 nm.
參考文獻
[1] H. Palneedi,V. Annapureddy, S. Priya, and J. Ryu,
Status and Perspectives of
MultiferroicMagnetoelectric Composite Materials
and Applications, Actuators, 5 ( 2016).
[2] K. H. Cho, S. Priya, Direct and converse effect
in magnetoelectric laminate composites,Applied
Physics Letters, . 98,232904 ( 2011).
[3] N. M. Aimon, D. H. Kim, X. Sun, C. A. Ross,
Multiferroic behavior of templated BiFeO3-CoFe2O4
self-assembled nanocomposites, ACS Appl
Mater Interfaces,7, 2263-2268 (2015).
[4] R. A. Islam, Y. Ni, A. G. Khachaturyan,S. Priya,
Giant magnetoelectric effect in sintered
multilayered composite structures, Journal of
Applied Physics, 104,044103 (2008).
[5] R. A. Islam, C. B. Rong, J. P. Liu, S. Priya,
Effect of gradient composite structure in cofired
bilayer composites of Pb (Zr0.56Ti0.44)O3 -
Ni0.6Zn0.2Cu0.2Fe2O4 system on magnetoelectric
coefficient, Journal of
materials science, 43,6337-6343 (2008).
[6] E. Lage, C. Kirchhof, V. Hrkac, L. Kienle, R.
Jahns, Knöchel, R.
Knöchel, E. Quandt, D. Meyners, Exchange biasing
of magnetoelectric composites, Nature materials,
11, 523-529 (2012).
[7] K. H. Lam,C. Y. Lo,H. L. W. Chan, Frequency
response of magnetoelectric 1–3-type
composites,Journal of Applied Physics, 107,
093901 (2010).
[8] A. McDannald, M. Staruch, G. Sreenivasulu, C.
Cantoni, G. Srinivasan, M. Jain, Magnetoelectric
coupling in solution derived 3-0 type
PbZr0.52Ti0.48O3: xCoFe2O4 nanocomposite films,
Applied Physics Letters, 102, 122905 (2013).
[9] K. Raidongia, A.Nag, A. Sundaresan, C. N. R. Rao,
Multiferroic and magnetoelectric properties of
core-shell CoFe2O4-BaTiO3 nanocomposites, Applied
Physics Letters, 97, 062904 (2010).
[10] M. Liu, X. Li, H. Imrane, Y. Chen, T. Goodrich,
Z. Cai, K. S. Ziemer, J. Y. Huang, N. X. Sun,
Synthesis of ordered arrays of multiferroic
NiFe2O4-Pb(Zr0.52Ti0.48)O3 core-shell nanowire,
Applied physics letters, 90, 152501 (2007).
[11] J. S. Andrew, J. D. Starr, M. A. Budi, Prospects
for nanostructured multiferroic composite
materials, Scripta Materialia, 74, 38-42 (2014).
[12] S. Xie, F. Ma, Y. Liu, J. Li, Multiferroic
CoFe2O4-Pb(Zr0.52Ti0.48)O3
core-shell nanofibers and their magnetoelectric
coupling, Nanoscale, 3,3152-3158 (2011).
[13] S. H. Xie, J. Y. Li, Y. Y. Liu, L. N. Lan, G.
Jin, Y. C. Zhou, Electrospinning and multiferroic
properties of NiFe2O4-Pb(Zr0.52Ti0.48)O3
composite nanofibers, Journal of Applied
Physics, 104, 024115 (2008).
[14] C. Fang, J. Jiao, J. Ma, D. Lin, H. Xu, X. Zhao,
H. Luo, Significant
reduction of equivalent magnetic noise by in-
plane series connection in
magnetoelectric Metglas/Mn-doped
Pb(Mg1/3Nb2/3)O3-PbTiO3
laminate composites, Journal of Physics D:
Applied Physics, 48, 465002 (2015).
[15] D. G. Lee, S. M. Kim, Y. K. Yoo, J. H. Han, D. W.
Chun, Y. C. Kim, J. Kim, K. S. Hwang, T. S. Kim,
W. W. Jo, H. Kim, S. H. Song, J. H. Lee,
Ultra-sensitive magnetoelectric microcantilever
at a low frequency,
Applied Physics Letters, 101, 182902 (2012).
[16] Y. Zhang, Z. Li, C. Deng, J. Ma, Y. Lin, and C.-
W. Nan, Demonstration of magmetoelectric read
head of multiferroic heterostructures, Applied
Physics Letters , 92, 152510 (2008).
[17] J. Ryu et al., "Ubiquitous magneto-mechano-
electric generator, Energy
& Environmental Science, 8,24022408 (2015).
[18] K. h. j. Buschow, F. R. dr Boer, Physics of
magnetism and magnetic materials, Kluwer
Academic/Plenum Publisher, New York (2003).
[19] N. A. Spaldin, Magnetic materials: fundamentals
and applications.Cambridge University Press
(2010).
[20] W. Heisenberg, Zur theorie des ferromagnetismus,
Zeitschrift fu ̈r Physik, 49, 619-636 (1928).
[21] B. D. Cullity, C. D. Graham, Introduction to
magnetic materials, John Wiley & Sons (2011).
[22] W. H. Meiklejohn, C. P. Bean, New magnetic
anisotropy, Physical review, 102, 1413 (1956).
[23] J. Nogués, I. K. Schukker, Exchange bias, Journal
of Magnetism and Magnetic Materials, 192, 203-232
(1999).
[24] M. Kiwi, Exchange bias theory, magnetism and
Magnetism and Magnetic Materials, 234, 584-595,
(2001).
[25] W. C. Röntgen, Ueber die durch Bewegung eignes im
homogenen electrischen Felde befindlichen
Dielectricums hervorgerufene
electrodynamische Kraft, Annalen der Physik, 271,
264-270 (1888)
[26] D. N. Astrov, The magnetoelectric effect in
antiferromagnetics, Sov. Phys. JETP, 11, 708-709
(1960).
[27] G. T. Rado, V. J. Folen, Observation of the
magnetically induced magnetoelectric effect and
evidence for antiferromagnetic domains,
Physical Review Letters, 7, 310 (1961).
[28] M. Fiebig, Revival of the magnetoelectric effect,
Journal of Physics D: Applied Physics, 38, R123
(2005).
[29] R. P. Santoro, R. E. Newnham, Survey of
magnetoelectric materials, Massachysettsinst of
Tech Cambridge Lab for Insulation Research
(1966).
[30] W. F. Brown Jr, R. M. Hornreich, S. Shtrikman,
Upper bound on the magnetoelectric
susceptibility, Physical Review, 168, 574 (1968).
[31] V. Wadhawan, Introduction to ferroic materials
,CRC press (2000).
[32] G. A. Smolenskii, I. E. Chupis,
Ferroelectromagnets, Soviet Physics
Uspekhi, 25, 475 (1982).
[33] N. A.Hill, Why are there are so few magnetic
ferroelectrics? , J. Phys. Chem. B. 104, 6694-
6709 (2000).
[34] N. Ortega, A. Kumar, J. F. Scott, R. S. Katiyar,
Multifunctional magnetoelectric materials for
device application, Journal of Physics:
Condensed Matter, 27, 504002 (2015).
[35] E. Ascher, H. Rieder, H. Schmid, H. Stössel, Some
Properties of Ferromagnetoelectric Nickel-Iodine
Boracite, Ni3B7O13I, Journal of
Applied Physics, 37, 1404-1405(1966).
[36] E. F. Bertaut, M. Mercier, Structure magnetique
de MnYO3, Physics Letters, 5, 27-29 (1963).
[37] N. Ikeda, H. Ohsumi, K. Ishii, T. Kakurai, Y.
Murakami, K. Yoshii, S. Mori, Y. Horible, H.
Kito, Ferroelectricity from iron valence ordering
in the charge-frustrated system LuFe2O4, Nature,
436, 1136-1138 (2005).
[38] J. Van Suchtelen, Product properties: a new
application of composite materials, Philips Res.
Rep, 27, 28-37 (1972).
[39] J. Van den Boomgaard, D. R. Terrell, R. A. J.
Born, H. F. J. I. Giller, An in situ grown
eutectic magnetoelectric composite material,
Journal of Materials Science, 9,1705-1709 (1974).
[40] A. M. J. G. Van Run, D. R. Terrell, J. H.
Scholing, An in situ grown eutectic
magnetoelectric composite material, Journal of
Materials Science, 9, 1710-1714(1974).
[41] C. W. Nan, M. I. Bichurin, S. Dong, D. Viehland,
G. Srinivasan, Multiferroic magnetoelectric
composites: historical perspective, status,
and future direction, Journal of Applied Physics,
103, 031101 (2008).
[42] Y. M. Venevtsev, G. S. Zhdanov, S. N. Solov'ev,
Crystal chemical studies of substances with
perovskite type structure and special
dielectric, Soviet. Phys. Cryst. 5, 594 (1961).
[43] A. M. Kadomtseva, Y. F. Popov, A. P. Pyatakov, G.
P. Vorob’ev, A. K. Zvezdin, and D. Viehland,
Phase transitions in multiferroic BiFeO3
crystals, thin-layers, and ceramics: enduring
potential for a single phase, room-temperature
magnetoelectric ‘holy grail’, Phase
Transitions, 79, 1019-1042, (2006).
[44] C. Ederer, N. A. Spaldin, Weak ferromagnetism and
magnetoelectric coupling in bismuth ferrite. Phys
Rev B, 71, 060401 (2005).
[45] H. Yang, Y. Q. Wang, H. Wang, and Q. X. Jia,
Oxygen concentration and its effect on the
leakage current in BiFeO3 thin films," Applied
Physics Letters, 96, 012909 (2010).
[46] A. Miszczyk and K. Darowicki, Study of
anticorrosion and microwave absorption properties
of NiZn ferrite pigments, Anti-Corrosion Methods
and Materials, 58, 13-21, (2011).
[47] C. M. Srivastava, G. Srinivasan, and N. G.
Nanadikar, Exchange constants in spinel ferrites,
Physical Review B, 19, 499-508, (1979).
[48] J. Gao, Y. Cui, and Z. Yang, "The magnetic
properties of NixZn1−xFe2O4 films fabricated by
alternative sputtering technology, Materials
Science and Engineering: B, 110, 111-114,( 2004).
[49] 林蔚叡, 以鐵酸鉍複鐵式材料為釘札層製作全氧化物自旋閥之
研究, 成功大學材料科學及工程學系博士學位論文, (2014).
[50] R. I. Walton, Subcritical solvothermal synthesis
of condensed inorganic materials, Chemical
Society Reviews, 31, 230-238, (2002).
[51] 汪建民, 材料分析,中國材料科學學會, 47-53,353-359,
(1998).
[52] L. Chen, J. Xu, and J. Chen, Applications of
scanning electron microscopy in earth sciences,
Science China Earth Sciences, 58,
1768-1778, (2015).
[53] M. Mahesh Kumar, A. Srinivas, S. V.
Suryanarayana, G. S. Kumar, T.
Bhimasankaram, An experimental setup for dynamic
measurement of magnetoelectric effect, Bulletin
of Materials Science, 21, 251-255
(1998).
[54] Model SR830 DSP Lock-in amplifier User Manaul,
Standford Reserarch System Inc. (2011).
[55] 盧世宗,鐵酸鉍及其鎳鋅鐵氧–鐵酸鉍複合材料的磁性、介電與
磁電性質之研究, 成功大學材料及工程學系博士學位論文,
(2017)
[56] J. G. Wan, Y. Weng, Y. Wu, Z. Li, J. M. Liu, and
G. Wang, Controllable phase connectivity and
magnetoelectric coupling behavior in
CoFe(2)O(4)-Pb(Zr,Ti)O(3) nanostructured
films,"Nanotechnology, 18, 465708, 2007.
[57] S. S. Kumbhar, M. A. Mahadik, V. S. Mohite, Y. M.
Hunge, K. Y. Rajpure, and C. H. Bhosale, Effect
of Ni content on the structural,
morphological and magnetic properties of spray
deposited Ni–Zn ferrite thin films, Materials
Research Bulletin, 67, 47-54, (2015).
[58] Y. Ichiyanagi, T. Uehashi, and S. Yamada,
Magnetic properties of Ni-Zn
ferrite nanoparticles, physica status solidi (c),
1, 3485-3488, (2004).
[59] M. I. Bichurin, V. M. Petrov, and G. Srinivasan,
Theory of low-frequency magnetoelectric coupling
in magnetostrictive-piezoelectric bilayers,
Physical Review B, 68, 054402, (2003).
[60] M. Li, Z. Wang, Y. Wang, J. Li, and D. Viehland,
Giant
magnetoelectric effect in self-biased laminates
under zero magnetic field," Applied Physics
Letters, vol. 102, no. 8, 2013.
[61] S. K. Mandal, G. Sreenivasulu, V. M. Petrov, and
G. Srinivasan, Flexural deformation in a
compositionally stepped ferrite and
magnetoelectric effects in a composite with
piezoelectrics, Applied Physics Letters, 96,
192502, (2010).