簡易檢索 / 詳目顯示

研究生: 蔡志煌
Tsai, Chin-Huang
論文名稱: 氮化鉿薄膜之基本特性及 做為閘極電極之特性研究
The Basic Property of Hf-N Thin Film and Its Characteristics as Gate Electrode
指導教授: 陳貞夙
Chen, rnrnJen-Sue
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 102
中文關鍵詞: 氮化鉿功函數閘極電極
外文關鍵詞: Work function, Hafnium Nitride, Gate Electrode
相關次數: 點閱:73下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中,首先探討不同基板偏壓及不同氮氣流量比例對反應性濺鍍氮化鉿(HfNx)薄膜材料性質的影響,濺鍍氮化鉿薄膜的方式為使用鉿靶材,在氬氣及氫氣下進行濺鍍,且就材料的電阻率、計量比、密度、晶體結構和化學鍵結進行討論;第二部分,利用特定條件製備金屬鉿(Hf)及氮化鉿薄膜作為閘極電極,製作成HfNx(或Hf)/HfO2/Si MOS電容器,討論MOS電容器經過氮氫混合氣體(90%N2 + 10%H2) 退火前後,整體電性及材料特性的改變。
    本實驗利用四點探針來量測薄膜的電阻率;拉塞福背向散射分析儀對薄膜進行組成成份及密度鑑定;使用低掠角X光繞射儀針對薄膜結構及結晶性進行分析;X光光電子能量分析儀則被用來對不同氮氣流量比例的薄膜,進行化學鍵結態分析;利用歐傑電子能譜分析儀對退火前後的MOS結構進行縱深元素分析;另外以電感電容電阻計量儀(HP4284A)進行C-V曲線量測;以微安培計量儀(HP4140B)進行J-V曲線量測。
    濺鍍氮化鉿薄膜時,隨基板負偏壓增大,薄膜電阻率會降低,但是,隨氮氣流量比例增大時,薄膜電阻率會增大;由拉塞福背向散射分析儀分析結果,隨氮氣流量比例增大時,薄膜中的氧原子與氮原子所佔比例會增多,薄膜的密度會變小;而由低掠角X光繞射儀可知,隨氮氣流量比例增大時,薄膜會從結晶相改變成接近非晶態的結構;至於X光光電子能量分析可看出,隨氮氣流量比例增大後,Hf的4f5/2和4f7/2峰值會往高能量方向移動。
    濺鍍Hf薄膜於矽基材經400oC退火處理,會產生氧化的情況;而濺鍍HfN1.0薄膜與HfN1.3薄膜於矽基材經400oC退火後,材料成分沒有明顯改變。以此三種薄膜為閘極電極材料,製作成HfNx (或Hf)/HfO2/Si MOS電容器在400oC退火後,由低掠角X光繞射儀可知,結晶結構依舊不變;而從歐傑電子縱深能譜分析儀可知,以濺鍍Hf薄膜為閘極電極的MOS電容器,在退火後,氧原子有從表面擴散到矽基材的情形;在C-V曲線及J-V曲線中,顯示氮化鉿薄膜具有相當不錯的熱穩定性;由平帶電壓對等效二氧化矽厚度(VFB vs. EOT)做圖,可得到Hf薄膜、HfN1.0薄膜與HfN1.3薄膜在HfO2上的有效功函數分別為4.08 eV、4.52 eV與4.82 eV。

    In this thesis work , HfNx films were prepared by reactive sputtering from a Hf target in an Ar + N2 atmosphere, with different negative substrate biases and nitrogen flow ratios. The resistivity, stoichiometry, density, crystal structure, and bonding configuration of HfNx films were investigated. Subsequently, Hf and HfNx films were applied as the gate electrode in the HfNx(or Hf)/HfO2/Si MOS capacitors. After forming gas (90%N2+10%H2) annealing (FGA), the electrical and material properties of HfNx(or Hf)/HfO2/Si MOS capacitors were discussed.
    The film resistivity was obtained by four point probe. Rutherford backscattering spectrometry (RBS) was utilized to examine the stoichiometry and density of the HfNx films. The crystal structure of the HfNx films was identified by grazing incident angle x-ray diffraction (GIAXRD). X-ray photoelectron spectroscopy (XPS) was employed to examine the chemical bonding of the HfNx films. The compositional depth profiles were obtained by Auger electron spectroscopy (AES). For electrical properties of MOS capacitors, the C-V curves were obtained by LCR meter (HP4284A), and picoampere meter (HP4140B) was used to measure the J-V curves.
    With the increase of the negative substrate bias, the resistivity of HfNx thin films decreases. However, as the nitrogen flow ratio increases, the resistivity of HfNx thin films increases. In addition, the oxygen and nitrogen contents also increase with the increasing nitrogen flow ratio, and the density of HfNx films decreases. GIAXRD patterns reveal that HfNx films gradually transform from crystalline phase to amorphous structure with increasing nitrogen flow ratio. Furthermore, the binding energy of Hf 4f core-level electrons increases with increasing nitrogen flow ratio.
    After annealing at 400oC for 30 min in forming gas, the sputtered Hf thin film oxidizes, but the composition of sputtered HfN1.0 and HfN1.3 thin films remains unchanged. The three films were applied as gate electrodes to form HfNx(or Hf)/HfO2/Si MOS capacitors. From the AES depth profiles, one can find that oxygen atoms diffuse from surface to silicon substrate in the case of Hf/HfO2/Si structure after annealing at 400oC. According to C-V and J-V curves, the HfNx/HfO2/Si MOS capacitors possess good thermal stability. The effective work function values are obtained from the VFB vs. EOT (equivalent oxide thickness) plots. The effective work functions of sputtered Hf, HfN1.0, and HfN1.3 thin films are 4.08 eV, 4.52 eV, and 4.82 eV, respectively.

    第1章 緒論 1 1-1 背景 1 1-2 研究目的 3 第2章 理論基礎 5 2-1 氮化鉿基本性質 5 2-2 氮化鉿薄膜之相關文獻回顧 9 2-3 功函數之量測 11 第3章 實驗方法與步驟 19 3-1 實驗材料 19 3-1.1 靶材 19 3-1.2 基材 19 3-1.3 濺鍍及退火使用氣氛 19 3-1.4 實驗相關藥品與耗材 20 3-2 實驗設備 21 3-2.1 薄膜濺鍍系統 21 3-2.2 熱處理系統 21 3-3 實驗流程 23 3-3.1 基材清洗 23 3-3.2 薄膜熱處理 24 3-3.3 MOS電容器製程 24 3-4 分析儀器 29 3-4.1 四點探針 29 3-4.2 表面粗度儀 29 3-4.3 拉賽福背向散射分析儀 30 3-4.4 低掠角X光繞射儀 31 3-4.5 X光光電子能譜儀 31 3-4.6 歐傑能譜分析儀 32 3-4.7 電感電容電阻計量儀與微安培計量儀 33 3-4.8 穿透式電子顯微鏡 34 第4章 結果與討論 39 4-1 氮化鉿薄膜之材料性質 40 4-1.1 薄膜電阻率測定 40 4-1.2 薄膜成份定量與密度分析 41 4-1.3 薄膜晶體結構分析 44 4-1.4 薄膜X光光電子能譜分析 45 4-2 HfNx/HfO2/Si結構的電性行為 62 4-2.1 HfNx薄膜經退火前後之電阻與成份分析62 4-2.2 HfNx/HfO2/Si晶體結構分析 63 4-2.3 HfNx/HfO2/Si歐傑電子能譜分析 64 4-2.4 HfNx/HfO2/Si C-V分析 65 4-2.5 HfNx/HfO2/Si J-V分析 65 4-2.6 HfNx/HfO2/Si功函數量測 66 第5章 結論 96

    1. C. Y.Wong, J. Y. C. Sun, Y. Taur, C. S. Oh, R. Angelucci, and B. Davari, Doping of N+ and P+ Polysilicon in a Dual-Gate Process, IEDM Tech. Dig.238 (1988).
    2. J. R. Pfiester, F. K. Baker, T. C. Mele, H. H. Tseng, P. J. Tobin, J. D. Hayden, J. W. Miller, C. D. Gunderson, and L. C. Parrillo, The Effects of Boron Penetration on P+ Polysilicon Gated PMOS Devices, IEEE Trans. Electron Devices 37, 1842 (1990).
    3. S. H. Lo, D. A. Buchanan, Y. Taur, W. Wang, Quantum-Mechanical Modeling of Electron Tunneling Current from the Inversion Layer of Ultra-Thin-Oxide nMOSFET's, IEEE Electron Dev. Lett. 18, 209 (1997).
    4. Y. Taur, D. A. Buchanan, W. Chen, D. J. Frank, K. E. Ismail, S. H. Lo, G. A. S. Halasz, R. G. Viswanathan, H. J. C. Wann, S. J. Wind, and H. S. Wong, CMOS Scaling Into The Nanometer Regime, Proc. IEEE 85, 486 (1997).
    5. J. A. Kittl, M. A. Pawlak, A. Lauwers, C. Demeurisse, K. Opsomer, K. G. Anil, C. Vrancken, M. J. H. Dal, A. Veloso, S. Kubicek, P. Absil, K. Maex, and S. Biesemans, Work Function of Ni Silicide Phases on HfSiON and SiO2 : NiSi, Ni2Si, Ni31Si12, and Ni3Si Fully Silicided Gates, IEEE Electron Dev. Lett. 27, 34 (2006).
    6. C. S. Park, B. J. Cho, and D.-L. Kwong, Thermally Stable Fully Silicided Hf-Silicide Metal-Gate Electrode, IEEE Electron Dev. Lett. 25, 372 (2004).
    7. H. Luan, H. N. Alshareef, P. S. Lysaght, H. R. Harris, H. C. Wen, K. Choi, Y. Senzaki, P. Majhi, and B.-H. Lee, Evaluation of tantalum silicon alloy systems as gate electrodes, Appl. Phys. Lett. 87, 212110 (2005).
    8. B. Y. Tsui and C. F. Huang, Wide Range Work Function Modulation of Binary Alloys for MOSFET Application, IEEE Electron Dev. Lett. 24, 153 (2003).
    9. V. Misra, H. Zhong, and H. Lazar, Electrical Properties of Ru-Based Alloy Gate Electrodes for Dual Metal Gate Si-CMOS, IEEE Electorn Dev. Lett. 23, 354 (2002).
    10. B. Chen, Y. Suh, J. Lee, J. Gurganus, V. Misra, and C. Cabral, Jr., Physical and electrical analysis of RuxYy alloys for gate electrode applications, Appl. Phys. Lette. 86, 053502 (2005).
    11. J. Westlinder, T. Schram, L. Pantisano, E. Cartier, A. Kerber, G. S. Lujan, J. Olsson, and G. Groeseneken, On the Thermal Stability of Atomic Layer Deposited TiN as Gate Electrode in MOS Devices, IEEE Electron Dev. Lett. 24, 550 (2003).
    12. C. Ren, D. S. H. Chan, X. P. Wang, B. B. Faizhal, M. -F. Li, Y. -C. Yeo, A. D. Trigg, A. Agarwal, N. Balasubramanian, J. S. Pan, P. C. Lim, A. C. H. Huan, and D. -L. Kwong, Physical and electrical properties of lanthanide-incorporated tantalum nitride for n-channel metal-oxide-semicnoductor field-effect transistors, Appl. Phys. Lett. 87, 073506 (2005).
    13. B. Y. Tsui and C. -F. Huang, Investigation of Cu/TaN Metal Gate for Metal-Oxide-Silicon Devices, J. Electrochem. Soc. 150, G22 (2003).
    14. D. -G. Park, K. -Y. Lim, H. -J. Cho, T. -H. Cha, I. -S. Yeo, J. -S. Roh, and J. W. Park", Impact of atomic-layer-deposited TiN on the gate oxide quality of W/TiN/SiO2/Si metal-oxide-semiconductor structures, Appl. Phys. Lett. 80, 2514 (2002).
    15. E. Atanassova, A. Paskaleva, N. Novkovski, and M. Georgieva, Conduction mechanisms and reliability of thermal Ta2O5-Si structures and the effect of the gate electrode, J. Appl. Phys. 97, 094104 (2005).
    16. G. B. Alers, D. J. Werder, Y. Chabal, H. C. Lu, E. P. Gusev, E. Garfunkel, T. Gustafsson, and R. S. Urdahl, Intermixing at the tantalum oxide/silicon interface in gate dielectric structures, Appl. Phys. Lett. 73, 1517 (1998).
    17. Y. S. Lai, K. J. Chen, and J. S. Chen, Investigation of the interlayer characteristics of Ta2O5 thin films deposited on bare, N2O, and NH3 plasma nitridated Si substrates, J. Appl. Phys. 91, 6428 (2002).
    18. S. W. Nam, J. H. Yoo, S. Nam, D .H. Ko, C. W. Yang, and J. H. Ku, Characteristics of ZrO2 Films with Al and Pt Gate Electrodes, J. Electrochem. Soc. 150, G849 (2003).
    19. W. J. Qi, R. Nieh, B. H. Lee, L. Kang, Y. Jeon; J. C. Lee, Electrical and reliability characteristics of ZrO2 deposited directly on Si for gate dielectric application, Appl. Phys. Lett. 77, 3269 (2000).
    20. M. Houssa, V. V. Afanas'ev, A.Stesmans, and M. M. Heyns, Variation in the fixed charge density of SiOx/ZrO2 gate dielectric stacks during postdeposition oxidation, Appl. Phys. Lett. 77, 1885 (2000).
    21. R. Garg, N. A. Chowdhury, M. Bhaskaran, P. K. Swain, and D. Misra, Electrical Characteristics of Thermally Evaporated HfO2, J. Electrochem. Soc. 151, F215 (2004).
    22. S. J. Rhee, C. Y. Kang, C. S. Kang, R. Choi, C. H. Choi, M. S. Akbar, and J. C. Lee, Effects of varying interfacial oxide and high-k layer thicknesses for HfO2 metal-oxide-semiconductor field effect transistor, Appl. Phys. Lett. 85, 1286 (2004).
    23. Y. Lin, M. C. Öztürk, B. Chen, S. J. Rhee, J. C. Lee, and V. Misra, Impact of Ge on integration of HfO2 and metal gate electrodes on strained Si channels, Appl. Phys. Lett. 87, 071903 (2005).
    24. P. S. Lysaght, B. Foran, G. Bersuker, J. J. Peterson, C. D. Young, P. Majhi, B. H. Lee, and H. R.Huff, Physical comparison of HfO2 transistors with polycrystalline silicon and TiN electrodes, Appl. Phys. Lett. 87, 082903 (2005).
    25. K. J. Choi and S. G. Yoon, Characteristics of Pf and TaN Metal Gate Electrode for High-k Hafnuim Oxide Gate Dielectrics, Electrochem. Solid State Lett. 7, G47 (2005).
    26. J. Kim, S. Kim, H. Kang, J. Choi, H. Jeona, M. Cho, K. Chung, S. B. K. Yoo, and C. Bae, Composition, structure, and electrical characteristics of HfO2 gatedielectrics grown using the remote- and direct-plasma atomic layerdeposition methods, J. Appl. Phys. 98, 094504 (2005).
    27. H. O. Pierson, Handbook of Refractory Carbides and Nitrides – Properties, Characteristics , Processing and Applications,( Noyes, New Jersey, 1996).
    28. T. B. Massalski, J. L. Murray, L. H. Bennet, and H. Baker, Binary Alloy Phase Diagrams, 2rded.(American Society for metals, Ohio, 1990).
    29. P. Kroll, Hafnium Nitride With Thorium Phosphide Structure : Physical Properties and an Assessment of the Hf-N, Zr-N, and Ti-N Phase Diagrams at High Pressures and Temperatures, Phy. Rev. Lett. 90, 125501 (2003).
    30. A. Zerr, G. Miehe, and R. Riedel, Synthesis of Cubic Zirconium and Hafnium nitride having Th3P4 Structure, Nature Mater. 2, 185 (2003).
    31. D. A. Neamen, Semiconductor Physics & Device : basic principles, 2rded. (Irwin, McGraw-Hill, 1997).
    32. R. Nowak and C. L. Li, Evaluation of HfN thin films considered as diffusion barriers in the Al/HfN/Si system, Thin Solid films 305, 297 (1997).
    33. K. L. Ou, S. Y. Chiou, M. H. Lin, and R. Q. Hsu, Barrier Capability of Hf-N Films with Various Nitrogen Concentrations Against Copper Diffusion in Cu/HfN/N+-P Junction Diodes, J. Electrochem. Soc. 152, G138 (2005).
    34. M. H. Lin and S. Y. Chiou, Effect of Phase Formation Behavior on Thermal Stability of Hafnium-Based Thin Films for Copper Interconnects, Jpn. J. Appl. Phys. 43, 3340 (2004).
    35. H. Y. Yu, H. F. Lim, J. H. Chen, M. F. Li, C. Zhu, C. H. Tung, A. Y. Du, W. D. Wang, D. Z. Chi, and D. -L. Kwong, Physical and Electrical Characteristics of HfN Gate Electrode for Advanced MOS Devices, IEEE Electron Dev. Lett. 24, 230 (2003).
    36. N. Sa, J. F. Kang, H. Yang, X. Y. Liu, Y. D. He, R. Q. Han, C. Ren, H. Y. Yu, D. S. H. Chan, and D.-L. Kwong, Mechanism of Positive-Bias Temperature Instability In Sub-1-nm TaN/HfN/HfO2 Gate Stack With Low Preexisting Traps, IEEE Electron Dev. Lett. 26, 610 (2005).
    37. J. F. Kang, H. Y. Yu, C. Ren, X.P. Wang, M. -F. Li, D. S. H. Chan, X. Y. Liu, R. Q. Han, Y. Y. Wang, and D. -L. Kwong, Characteristics of Sub-1 nm CVD HfO2 Gate Dielectrics with HfN Electrodes for Advanced CMOS Applications, IEEE J. Solid-State Circuits 1, 393 (2004).
    38. H. H. Yu, J. F. Kang, C. Ren, J. D. Chen, Y. T. Hou, C. Shen, M. F. Li, D. S. H. Chan, K. L. Bera, C. H. Tung, and D. -L. Kwong, Robust High-Quality HfN-HfO2 Gate Stack for Advanced MOS Device Applications, IEEE Electron Dev. Lett. 25, 70 (2004).
    39. H. Y. Yu, M. F. Li, and D. -L Kwong, Thermally Robust HfN Metal as a Promising Gate Electrode for Advanced MOS Device Applications, IEEE Trans. Electron Devices 51, 609 (2004).
    40. Y. C. Yeo, Metal gate technology for nanoscale transistors - material selection and process integration issues, Thin Solid Films 462-463, 34 (2004).
    41. J. F. Kang, H. Y. Yu, C. Ren, X. P. Wang, M. -F. Li, D. S. H. Chan, Y. -C. Yeo, N. Sa, H. Yang, X. Y. Liu, R.Q. Han, and D. -L. Kwong, Improved Electrical and Reliability Characteristics of HfN-HfO2-Gated nMOSFET With 0.95-nm EOT Fabricated Using a Gate-First Process, IEEE Electron Dev. Lett. 26, 237 (2005).
    42. C. Ren, H. Y. Yu, J. F. Kang, X. P. Wang, H. H. H. Ma, Y. C. Yeo, D. S. H. Chan, M. -F. Li, and D. -L. Kwong, A Dual-Metal Gate Integration Process for CMOS With Sub-1-nm EOT HfO2 by Using HfN Replacement Gate, IEEE Electron Dev. Lett. 25, 580 (2004).
    43. H. Y. Yu, C. Ren, Y. C. Yeo, J. F. Kang, X. P. Wang, H. H. H. Ma, M. F. Li, D. S. H. Chan, D.-L. Kwong, Fermi Pinning-Induced Thermal Instability of Metal-Gate Work Functions, IEEE Electron Dev. Lett. 25, 337 (2004).
    44. K. Yamamoto, S. Hayashi, M. Kubota, and M. Niwa, Effect of Hf metal predeposition on the properties of sputtered HfO2/Hf stacked gate dielectrics, Appl. Phys. Lett. 81, 2053 (2002)
    45. C. S. Lai, S. K. Peng, T. M. Pan, J. C. Wang, and K. M. Fan, Work Function Adjustment by Nitrogen Incorporation in HfNx Gate Electreode with Post Metal Annealing, Electrochem. Solid State Lett. 9, G239 (2006)
    46. D. K. Schroder, Semiconductor Material and Device Characterization, 2nded., (John Wiley & Sons, Arizona, 1998).
    47. M. Ohing, The Materials Science of Thin Films, (Academic Press, San Diego, 1992), pp. 129-131, and references therein.
    48. M. Ohing, The Materials Science of Thin Films, (Academic Press, San Diego, 1992), pp. 126-128, and references therein.
    49. R. B. King, Encyclopedia of inorganic chemistry, (Wiley, New York,1994), pp. 2498-2514, and references therein.
    50. W. K. Chu, J. W. Mayer, and M. A. Nicolet, Backscattering Spectrometry, (Academic Press, New York, 1978).
    51. B. D. Cullity, Elements of X-ray Diffraction, 2nded., (Addison-Wesley, Boston, 1978).
    52. D. Briggs and M. P. Seah, Practical Surface Analysis, 2nd ed, Volume 1- Auger and X-ray Photoelectron Spectroscopy, (Wiley, Chichester, 1990).
    53. D. B. Williams and C. B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science, (Plenum, New York, 1996).
    54. G. S. Brady, Materials Handbook, (McGraw Hill Book company, New York, 1951), p. 345.
    55. 呂政學, 氧化鉿及氧化鉿薄膜作為閘極介電層之製備與特性研究, 國立成功大學材料科學及工程學系碩士論文(2005), pp. 49-59.
    56. R. W. M. Kwok, XPSPEAK 4.0, Department of Chemistry, The Chinese University of Hong Kong Shatin, Hong Kong, email : rmkwok@cuhk.edu.hk .
    57. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, (Physical Electronics, Inc., Minnesota, 1995).
    58. J. Emsley, The elements, (Clarndon, Oxford, 1989).
    59. W. Wang, T. Nabatame, and Y. Shimogaki, Interface structure of HfNx/SiO2 Stack grown by MOCVD using TDEAHf precursor, Sur. Sci. 588, 108 (2005)
    60. L. E. Davis, N. C. MacDonald, P. W. Palmberg, G. E. Riach, and R. E. Weber, Handbook of Auger Electron spectroscopy, (Physical Electronics, Inc., Minnesota, 1978).
    61. H. B. Michaelson, The work function of the elements and its periodicity, J. Appl. Phys. 48, 4729 (1977).
    62. N. W. Ashcroft and N. D. Mermin, Solid State Physics, (Harcourt , Inc., Philadelphia, 1976).

    下載圖示 校內:2007-07-28公開
    校外:2007-07-28公開
    QR CODE