簡易檢索 / 詳目顯示

研究生: 吳品儀
Wu, Pin-I
論文名稱: 石油瀝青活性碳之製程探討與電雙層電容應用
Preparation of Activated Carbon from Petroleum Pitch for Electric Double-Layer Capacitors
指導教授: 鄧熙聖
Teng, Hsisheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 103
中文關鍵詞: 電雙層電容器介相瀝青化學活化活性碳孔洞結構
外文關鍵詞: electric double layer capacitors, mesophase pitch, chemical activation, activated carbon, porous structure
相關次數: 點閱:82下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出了一種分階段加熱程序,將石油瀝青轉化為中間相結構再經由KOH活化成為雙電層電容器(EDLC)的高性能碳電極材料。在前熱處理中,降低升溫速率和延長持溫時間(430℃)都增加了中間相結構的形成,導致活性碳微孔含量和微孔表面積增加,有利於儲存能量提高比電容值,但卻不利於離子的傳輸;另一方面,降低前熱處理的升溫速率可以提高碳材的導電性。為了同時具有高導電性及利於離子傳輸的結構我們使用分階段升溫程序,在升溫過程中插入兩個低溫持溫的步驟(100和200℃)。分階段升溫程序將石油瀝青的脂肪族併合到芳香族結構中,這可以大大提高產物產率,並形成了可以轉化為高導電性和低離子傳輸阻力的中間相結構。組成對稱型二極式超級電容器在有機相溶液(TEMABF4/PC)中放電速率為0.5 A g-1時,電容值可達160 F g-1;且在高放電速率下(100 A g-1)時,電容值仍可維持110 F g-1。其比能量可達40.1 Wh kg-1,且功率可達到93.2 kW kg-1。本研究的結果指出使用石油瀝青作為前驅物用於製備多孔性活性碳的可行性和脂肪族用於調控活性碳結構以利於超級電容器電荷儲存的重要性。

    This study devises a temperature-programmed pretreatment strategy to convert petroleum pitch into a mesophase framework that can be activated by KOH to become high-performance carbon electrode materials for electric double layer capacitors (EDLCs). The multi-step pretreatment incorporates the aliphatic species of petroleum pitch into the aromatic framework, which substantially increases the product yield and forms a mesophase framework that can be converted to an activated carbon with high electronic conductivity and low ion transport resistance. When assembled in a symmetric two-electrode EDLC, the multi-step carbon exhibits capacitance values of 160 and 110 F g-1 at a discharge current of 0.5 and 100 A g-1, respectively, in 1 M triethylmethylammonium tetrafluoroborate/propylene carbonate electrolyte. The EDLC delivers specific energy and power of 40.1 Wh kg-1 and 93.2 kW kg-1 (based on the total carbon mass) over a voltage of 02.7 V. The results of the present study demonstrate the feasibility of using petroleum pitch as the precursor for porous carbon production and the significance of aliphatic species incorporation to regulate the pore structure of the carbons for charge storage.

    中文摘要........................ I 英文延伸摘要.....................II 致謝........................... IX 目錄............................X 表目錄..........................XIV 圖目錄..........................XV 第一章 緒論.....................1 1-1 前言......................1 1-2 超電容研究背景與發展.......2 1-3 超電容儲能機制............ 6 1-4 超電容的構成元件...........9 1-4-1構成元件簡介...........9 1-4-2電極材料...............9 1-4-3集電器................11 1-4-4介電物質..............11 1-4-5電解質................12 1-5石油瀝青與媒焦瀝青..........14 1-6 多孔性活性碳...............15 1-6-1多孔性活性碳簡介.......15 1-6-2多孔性活性碳製備.......17 1-7 研究動機...................20 第二章 文獻回顧與理論說明........21 2-1碳材應用於超級電容器的發展.....21 2-1-1活性碳碳材 (Activated carbon, AC)....21 2-1-2 模板製備多孔碳材 (Templated porous carbon)....22 2-1-3碳化物衍生碳 (Carbide-derived carbons, CDC)....23 2-1-4石墨烯材料....23 2-2介相瀝青碳材應用於超電容的發展....25 2-3活化介相瀝青碳材原理.............................26 2-4碳材孔隙分析原理................................ 28 2-4-1等溫吸附曲線...............................28 2-4-2 BET等溫吸附模式...........................31 2-4-3 BJH理論..................................32 2-4-4 D-R 等溫吸附模式..........................33 2-4-5密度泛函理論(Density Functional Theory, DFT)...34 2-5 電雙層電容器....................................38 2-5-1電容器簡介.................................38 2-5-2電雙層原理.................................41 2-5-3 Helmholtz 電雙層模型......................43 2-5-4 Stern電雙層模型...........................44 2-6電化學測試.......................................46 2-6-1循環伏安法.................................46 2-6-2定電流充放電...............................47 2-6-3交流阻抗理論...............................49 第三章 實驗方法與儀器原理介紹.........................54 3-1 藥品、材料與儀器設備........................54 3-1-1 藥品與材料........................ ......54 3-1-2 儀器與實驗設備...........................55 3-2 實驗步驟........................................56 3-2-1 沒有前熱處理(As-received)................58 3-2-2 單步驟升溫熱處理(Single-step heat treated)..59 3-2-3 分段升溫熱處理(Multi-step heat treated).....60 3-3 電化學測量簡介........................61 3-3-1 電容器組裝........................61 3-3-2 循環伏安法測試........................61 3-3-3 定電流充放電........................62 3-3-4 交流阻抗分析........................62 3-3-5 電池長效性測試........................62 3-4 樣品鑑定......................................63 3-5 分析儀器原理簡介........................64 3-5-1 穿透式電子顯微鏡 (Transmission Electron Microscope, TEM)....................................64 3-5-2 物理吸附分析 (Brunauer-Emmett-Teller, BET) 66 3-5-3 X光繞射儀 (X-ray Diffraction, XRD) 67 3-5-4 熱重分析儀 (Thermogravimetric Analysis, TGA) 70 3-5-5 偏光顯微鏡 (Polarization Microscopy) 70 第四章 結果與討論.....................................71 4-1 TGA結果之討論..................................71 4-2 TEM結果之討論....................................74 4-3 XRD圖譜結果之討論........................... 76 4-4 碳材孔隙結構結果之討論.............................78 4-4-1 氮氣吸脫附實驗...................................78 4-4-2 材料孔徑分布.....................................80 4-5 導電度結果之討論....................................83 4-6 孔洞機制探討.....................................84 4-7 電化學測試.....................................86 4-7-1循環伏安法分析.....................................86 4-7-2定電流充放電分析...................................88 4-7-3交流阻抗分析.....................................91 4-8 電化學行為表現.....................................95 第五章 結論.....................................97 參考文獻.....................................98

    1.A. Burke, Journal of Power Sources, 91, 37-50, 2000.
    2.C. K. Chan, R. N. Patel, M. J. O’connell, B. A. Korgel and Y. Cui, ACS Nano, 4, 1443-1450, 2010.
    3.Y. Kumar, G. Pandey and S. Hashmi, The Journal of Physical Chemistry C, 116, 26118-26127, 2012.
    4.J. R. Miller and P. Simon, Science Magazine, 321, 651-652., 2008.
    5.P. Simon and Y. Gogotsi, Nature Materials, 7, 845-854, 2008.
    6.J. J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B. G. Sumpter, A. Srivastava, M. Conway, A. L. Mohana Reddy, J. Yu and R. Vajtai, Nano Letters, 11, 1423-1427, 2011,.
    7.S. Yoon, J. Lee, T. Hyeon and S. M. Oh, Journal of The Electrochemical Society, 147, 2507-2512, 2000.
    8.Y. Zhou, Y. Kim, C. Jo, J. Lee, C. W. Lee and S. Yoon, Chemical Communications, 47, 4944-4946, 2011.
    9.L. Bonnefoi, P. Simon, J. Fauvarque, C. Sarrazin, J. Sarrau and A. Dugast, Journal of Power Sources, 80, 149-155, 1999.
    10.M. F. El-Kady, V. Strong, S. Dubin and R. B. Kaner, Science, 335, 1326-1330, 2012.
    11.D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.-L. Taberna and P. Simon, Nature Nanotechnology, 5, 651-654, 2010.
    12.J. Zheng and T. Jow, Journal of Power Sources, 62, 155-159, 1996.
    13.J. Chmiola, G. Yushin, R. Dash and Y. Gogotsi, Journal of Power Sources, 158, 765-772, 2006.
    14.J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon and P. L. Taberna, Science, 313, 1760-1763, 2006.
    15.B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Springer Science & Business Media, 2013.
    16.B. Daffos, P. L. Taberna, Y. Gogotsi and P. Simon, Fuel Cells, 10, 819-824, 2010.
    17.Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning, T. Li and F. Wei, Advanced Functional Materials, 21, 2366-2375, 2011.
    18.X. He, N. Zhang, X. Shao, M. Wu, M. Yu and J. Qiu, Chemical Engineering Journal, 297, 121-127, 2016.
    19.H.C. Huang, C.W. Huang, C.T. Hsieh, P.L. Kuo, J.M. Ting and H. Teng, The Journal of Physical Chemistry C, 2011, 115, 20689-20695.
    20.C. Largeot, C. Portet, J. Chmiola, P.L. Taberna, Y. Gogotsi and P. Simon, Journal of the American Chemical Society, 130, 2730-2731, 2008.
    21.J. A. Paradiso and T. Starner, IEEE Pervasive Computing, 4, 18-27, 2005.
    22.X. Wei, S. Wan and S. Gao, Nano Energy, 28, 206-215, 2016.
    23.J. Yan, Z. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, R. Zhang, L. Zhi and F. Wei, Advanced Functional Materials, 22, 2632-2641, 2012.
    24.A. M. Couper, D. Pletcher and F. C. Walsh, Chemical Reviews, 90, 837-865, 1990.
    25.D. N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura and S. Iijima, Nature Materials, 5, 987-994, 2006.
    26.J. Gamby, P. Taberna, P. Simon, J. Fauvarque and M. Chesneau, Journal of Power Sources, 101, 109-116,2001.
    27.B. Marsan, N. Fradette and G. Beaudoin, Journal of The Electrochemical Society, 139, 1889-1896, 1992.
    28.C. Merino, P. Soto, E. Vilaplana-Ortego, J. M. G. de Salazar, F. Pico and J. M. Rojo, Carbon, 43, 551-557, 2005.
    29.R. Pekala, J. Farmer, C. Alviso, T. Tran, S. Mayer, J. Miller and B. Dunn, Journal of Non-Crystalline Solids, 225, 74-80, 1998.
    30.H. Pröbstle, M. Wiener and J. Fricke, Journal of Porous Materials, 10, 213-222, 2003.
    31.張家林, 陳彥旭, 張癸森, 李繼喜 and 呂國旭, 石油季刊, 51, 45-63, 2015.
    32.M. J. Allen, V. C. Tung and R. B. Kaner, Chemical Reviews, 110, 132-145, 2009.
    33.D. Eder, Chemical Reviews, 110, 1348-1385, 2010.
    34.A. B. Fuertes and S. Alvarez, Carbon, 42, 3049-3055, 2004.
    35.D. Li and R. B. Kaner, Nat Nanotechnol, 3, 101, 2008.
    36.T. L. Makarova, B. Sundqvist, P. Scharff, M. Gaevski, E. Olsson, V. Davydov, A. Rakhmanina and L. Kashevarova, Carbon, 39, 2203-2209, 2001.
    37.P. Simon and Y. Gogotsi, Accounts of Chemical Research, 2012, 46, 1094-1103.
    38.H. F. Stoeckli, Carbon, 28, 1-6, 1990.
    39.Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen and Y. Chen, The Journal of Physical Chemistry C, 113, 13103-13107, 2009.
    40.C. Arbizzani, M. Mastragostino and L. Meneghello, Electrochimica Acta, 41, 21-26, 1996.
    41.E. Frackowiak, K. Jurewicz, S. Delpeux and F. Béguin, Journal of Power Sources, 97, 822-825, 2001.
    42.D. Qu, Journal of Power Sources, 109, 403-411, 2002.
    43.K. Kinoshita, 1988.
    44.T.C. Weng and H. Teng, Journal of the Electrochemical Society, 148, A368-A373, 2001.
    45.M. Endo, Y. Kim, T. Takeda, T. Maeda, T. Hayashi, K. Koshiba, H. Hara and M. Dresselhaus, Journal of the Electrochemical Society, 148, A1135-A1140, 2001.
    46.L. Wei, K. Tian, Y. Jin, X. Zhang and X. Guo, Microporous and Mesoporous Materials, 227, 210-218, 2016.
    47.H. Luo, Y. Yang, Y. Sun, D. Chen, X. Zhao, D. Zhang and J. Zhang, Journal of Applied Electrochemistry, 45, 839-848, 2015.
    48.H. Teng, Y.-J. Chang and C.-T. Hsieh, Carbon, 39, 1981-1987,2001.
    49.X. Wei, S. Wan, X. Jiang, Z. Wang and S. Gao, ACS Applied Materials & Interfaces, 7, 22238-22245, 2015.
    50.P.-X. Hou, T. Yamazaki, H. Orikasa and T. Kyotani, Carbon, 43, 2624-2627, 2005.
    51.T. Kyotani, T. Nagai, S. Inoue and A. Tomita, Chemistry of Materials, 1997, 9, 609-615.
    52.H. Nishihara, H. Itoi, T. Kogure, P. X. Hou, H. Touhara, F. Okino and T. Kyotani, Chemistry–A European Journal, 15, 5355-5363, 2009.
    53.Y. Gogotsi, A. Nikitin, H. Ye, W. Zhou, J. E. Fischer, B. Yi, H. C. Foley and M. W. Barsoum, Nature Materials, 2, 591-594, 2003.
    54.R. Dash, G. Yushin and Y. Gogotsi, Microporous and Mesoporous Materials, 86, 50-57, 2005.
    55.Y. Gogotsi, R. K. Dash, G. Yushin, T. Yildirim, G. Laudisio and J. E. Fischer, Journal of the American Chemical Society, 127, 16006-16007, 2005.
    56.Y. Chen, X. Zhang, P. Yu and Y. Ma, Journal of Power Sources, 195, 3031-3035, 2010.
    57.L. Zhang and G. Shi, The Journal of Physical Chemistry C, 115, 17206-17212, 2011.
    58.S. Vivekchand, C. S. Rout, K. Subrahmanyam, A. Govindaraj and C. Rao, Journal of Chemical Sciences, 120, 9-13, 2008.
    59.X. Liu and T. Osaka, Journal of the Electrochemical Society, 143, 3982-3986, 1996.
    60.S. Mitra and S. Sampath, Electrochemical and Solid-State Letters, 7, A264-A268, 2004.
    61.H. K. Bok and S. M. Oh, Journal of The Electrochemical Society, 155, A685-A692, 2008.
    62.V. Ruiz, C. Blanco, R. Santamaría, J. M. Ramos-Fernández, M. Martínez-Escandell, A. Sepúlveda-Escribano and F. Rodríguez-Reinoso, Carbon, 47, 195-200, 2009.
    63.H.C. Huang, C.W. Huang, C.T. Hsieh and H. Teng, Journal of Materials Chemistry A, 2, 14963-14972, 2014.
    64.T. L. Hill, Advances in Catalysis, 4, 211-258, 1952.
    65.J. Y. Ying, C. P. Mehnert and M. S. Wong, Angewandte Chemie International Edition, 38, 56-77, 1999.
    66.S. Brunauer, P. H. Emmett and E. Teller, Journal of the American Chemical Society, 60, 309-319, 1938.
    67.A. Schoen, NASA: Washington, DC, 1970.
    68.C. e. N. e. R. Rao, A. e. K. Sood, K. e. S. Subrahmanyam and A. Govindaraj, Angewandte Chemie International Edition, 48, 7752-7777, 2009.
    69.R. Ryoo, S. H. Joo and S. Jun, The Journal of Physical Chemistry B, 103, 7743-7746, 1999.
    70.P. Tarazona, Molecular Physics, 60, 573-595, 1987.
    71.J. Landers, G. Y. Gor and A. V. Neimark, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 437, 3-32, 2013.
    72.J. Jagiello, J. Kenvin, J. P. Olivier, A. R. Lupini and C. I. Contescu, Adsorption Science & Technology, 29, 769-780, 2011.
    73.V. V. Bhat, C. I. Contescu, N. C. Gallego and F. S. Baker, Carbon, 48, 1331-1340, 2010.
    74.J. Jagiello and J. P. Olivier, Carbon, 55, 70-80, 2013.
    75.H. D. Young, Physics: Extended Version with Modern Physics, Addison-Wesley, 1992.
    76.C. H. Hamann, A. Hamnett and W. Vielstich, Wiley-VCH, 1998.
    77.B. Conway, New York, 1999.
    78.J. E. B. Randles, Discussions of the Faraday Society, 1, 11-19, 1947.
    79.E. Warburg, Annalen Der Physik, 303, 493-499, 1899.
    80.R. de Levie, Electrochimica Acta, 8, 751-780, 1963.
    81.R. De Levie, Electrochimica acta, 9, 1231-1245, 1964.
    82.R. De Levie, Electrochimica Acta, 10, 113-130, 1965.
    83.H. E. Brouji, J.-M. Vinassa, O. Briat, N. Bertrand and E. Woirgard, 2008.
    84.M.F. Hsueh, C.W. Huang, C.A. Wu, P.L. Kuo and H. Teng, The Journal of Physical Chemistry C, 117, 16751-16758,2013.
    85.C. W. Huang, C. A. Wu, S. S. Hou, P. L. Kuo, C. T. Hsieh and H. Teng, Advanced Functional Materials, 22, 4677-4685, 2012.
    86.H.-C. Huang, C.-W. Huang, C.-T. Hsieh and H. Teng, Journal of Materials Chemistry A, 2, 14963,2014.
    87.T. Centeno and F. Stoeckli, Carbon, 48, 2478-2486, 2010.
    88.J. Rouquerol, D. Avnir, C. Fairbridge, D. Everett, J. Haynes, N. Pernicone, J. Ramsay, K. Sing and K. Unger, Pure and Applied Chemistry, 66, 1739-1758, 1994.
    89.M. P. Seah and W. Dench, Surface and Interface Analysis, 1, 2-11, 1979.
    90.K. S. Sing and R. T. Williams, Particle & Particle Systems Characterization, 21, 71-79, 2004.
    91.F. Stoeckli and T. A. Centeno, Journal of Materials Chemistry A, 1, 6865-6873, 2013.
    92.B. Ravel, Journal of Synchrotron Radiation, 8, 314-316, 2001.
    93.M. Yan, F. Chen, J. Zhang and M. Anpo, The Journal of Physical Chemistry B, 109, 8673-8678, 2005.
    94.S. Berger, D. McKenzie and P. Martin, Philosophical Magazine Letters, 57, 285-290, 1988.
    95.M. Sevilla and A. B. Fuertes, ACS Nano, 8, 5069-5078, 2014.
    96.K. Xia, Q. Gao, J. Jiang and J. Hu, Carbon, 46, 1718-1726, 2008.
    97.S. Dutta, A. Bhaumik and K. C.-W. Wu, Energy & Environmental Science, 7, 3574-3592, 2014.
    98.Y. Li, Z. Li and P. K. Shen, Advanced Materials, 25, 2474-2480, 2013.
    99.M. Oschatz, S. Boukhalfa, W. Nickel, J. P. Hofmann, C. Fischer, G. Yushin and S. Kaskel, Carbon, 113, 283-291, 2017.
    100.L. Qie, W. Chen, H. Xu, X. Xiong, Y. Jiang, F. Zou, X. Hu, Y. Xin, Z. Zhang and Y. Huang, Energy & Environmental Science, 6, 2497-2504, 2013.
    101.D. Lozano-Castello, D. Cazorla-Amorós, A. Linares-Solano, S. Shiraishi, H. Kurihara and A. Oya, Carbon, 41, 1765-1775, 2003.
    102.Z. Wen, X. Wang, S. Mao, Z. Bo, H. Kim, S. Cui, G. Lu, X. Feng and J. Chen, Advanced Materials, 24, 5610-5616, 2012.
    103.M. Zhi, F. Yang, F. Meng, M. Li, A. Manivannan and N. Wu, ACS Sustainable Chemistry & Engineering, 2, 1592-1598, 2014.
    104.H. Jiang, P. S. Lee and C. Li, Energy & Environmental Science, 6, 41-53, 2013.
    105.J. Huang, B. G. Sumpter and V. Meunier, Chemistry–A European Journal, 14, 6614-6626, 2008.
    106.D. W. Wang, F. Li, M. Liu, G. Q. Lu and H. M. Cheng, Angewandte Chemie International Edition, 47, 373-376, 2008.
    107.R. Saliger, U. Fischer, C. Herta and J. Fricke, Journal of Non-Crystalline Solids, 225, 81-85,1998.
    108.J. Segalini, B. Daffos, P.-L. Taberna, Y. Gogotsi and P. Simon, Electrochimica Acta, 55, 7489-7494, 2010.
    109.J. H. Jang, S. Jeon, J. H. Cho, S.-K. Kim, S.-Y. Lee, E. Cho, H.-J. Kim, J. Han and T.-H. Lim, Journal of The Electrochemical Society, 156, B1293-B1300, 2009.
    110.D. D. Macdonald, Electrochimica Acta, 51, 1376-1388, 2006.
    111.I. Raistrick, Electrochimica Acta, 35, 1579-1586, 1990.
    112.C. Yang, C.-Y. V. Li, F. Li and K.-Y. Chan, Journal of The Electrochemical Society, 160, H271-H278, 2013.
    113.B. Batalla García, A. M. Feaver, Q. Zhang, R. D. Champion, G. Cao, T. T. Fister, K. P. Nagle and G. T. Seidler, Journal of Applied Physics, 104, 014305, 2008.
    114.V. Kumbhar, A. Jagadale and C. Lokhande, Journal of Power Sources, 234, 107-110, 2013.
    115.X.-M. Liu, R. Zhang, Z. Liang, D.-H. Long, W.-M. Qiao, J.-h. Yang and L.-C. Ling, New Carbon Materials, 22, 153-158, 2007.
    116.Y.-R. Nian and H. Teng, Journal of Electroanalytical Chemistry, 540, 119-127, 2003.

    下載圖示 校內:2022-07-31公開
    校外:2022-07-31公開
    QR CODE