簡易檢索 / 詳目顯示

研究生: 黃昱陽
Huang, Yu-Yang
論文名稱: 選擇性雷射燒熔機制對3D列印方法粉末熱影響區域分析與改質層熱傳數值模擬研究
Analysis of Heat Affected Zone in Steel Powder and Simulation of Heat Transfer in the Worked Zone by Selective Laser Melting for 3D Printing Applications
指導教授: 林仁輝
Lin, Jen-Fin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 117
中文關鍵詞: 3D列印選擇性雷射燒熔相變化熔融區熱影響區
外文關鍵詞: 3D printing, SLM, melting zone, heat affected zone
相關次數: 點閱:111下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要以選擇性雷射燒熔(Selective laser melting, SLM) 3D列印機制作為數值模擬計算之建構模型,模擬列印過程中金屬粉末及基板受雷射能量所產生熱傳行為及相變化過程中之溫度效應,並探討不同雷射控制因子對金屬粉末及基板燒蝕後熱效應區之影響。再藉由對比選擇性雷射燒熔(SLM)實驗列印出金屬物件之熱影響區域分佈,分析數值模擬方法與實驗受雷射控制參數之影響,評估數值模擬方案對選擇性雷射燒熔(SLM)實驗之控制範圍及可靠程度。
    數值模型建構為採用COMSOL Multiphysics多重物理量耦合模擬軟體建立理論架構,由熱傳方程式導入相變化方程式,再由雷射輻射熱傳方程式及雷射能量方程式,建立選擇性雷射燒熔(Selective laser melting, SLM)列印過程對金屬粉末燒熔之模型並探討金屬粉末熔融區(Melting zone, MZ)及金屬基板熱影響區(Heat affected zone, HAZ)之控制因子。根據數值模擬與實驗結果,雷射輸入功率越大,則熔融區之最大深度、最大寬度及熱影響區厚度都會隨之增加,而雷射掃描速度越慢對熔融區之最大寬度及最大深度亦會有增加情形且對熱影響區也有顯著增厚的趨勢,但由實驗得知雷射掃描速度過慢時卻會造成過度加熱而使熔融區之最大深度相對縮小。比對實驗與數值模擬結果,相關控制參數之影響趨勢大致相同,但在熔融區之深度、寬度及熱影響區之數據大小,數值模擬結果皆小於實驗數據。此誤差可能為液態金屬固化所造成之材料形變間接影響熔融區之深、寬度,同時粉末間之孔隙率亦可能會影響雷射光在其中折射或反射情形,導致金屬粉末或基板受熱情況不同,而造成熱影響區域有所改變,因此再詳加探討相關影響條件,便可望能更接近SLM列印結果。

    This study focuses on selective laser melting (SLM) process, the melting zone of the powder and heat affected zone of the substrate influence the quality of 3D printing objects. In the present study, the controlling factors of SLM process are the laser power, laser scanning velocity, and thickness of powder bed. Because the technology of SLM is developing, the finite element model of SLM process is necessary to forecast the results. In order to check the accuracy of the simulational model, the experiment with same conditions is used to contrast two results. In this case, the material of powder is SKD61, and the substrate is S45C. After SLM printing, the depth, width, and length of melting zone, and heat affected zone of the substrate are measured to realize the influence of laser controlling parameters. Meanwhile, discussing the tendency for different combinations of laser parameters.

    摘要 I Extended Abstract III 致謝 VII 目錄 IX 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1-1 前言 1 1-1-1 3D列印技術成型機制 1 1-2 研究動機 4 1-3 文獻回顧 5 1-4 研究架構 8 第二章 理論數值分析 10 2-1 數值理論 10 2-1-1 能量方程式 10 2-1-2 相變化方程式 12 2-1-3 雷射輻射熱傳方程式 14 2-1-4 邊界方程式 17 2-2 雷射理論 19 2-2-1 雷射產生機制[29] 19 2-2-2 光纖雷射 21 2-2-3 雷射輸出模式 22 2-2-4 雷射與材料交互機制 22 2-2-5 選擇性雷射燒熔之加工參數 24 第三章 數值模擬方法 30 3-1 數值模擬軟體簡介 30 3-2 材料性質與模型設定 31 3-3 有限元素模型網格化 31 3-4 邊界條件與初始條件設定 33 第四章 實驗規劃 42 4-1 實驗方法 42 4-2 試件材料選擇 43 4-3 實驗設備與流程 43 4-3-1 選擇性雷射燒熔(Selective laser melting)列印實驗 44 4-3-2 金相試件製備 44 4-4 顯微組織觀察 45 第五章 結果與討論 51 5-1 熱影響區域分析 51 5-1-1 雷射燒蝕速度對燒熔區之影響 52 5-1-2 雷射功率對燒熔區之影響 53 5-1-3 雷射燒蝕速度對燒熔區之移動效應 54 5-1-4 雷射功率對燒熔區之移動效應 56 5-2 相變區之暫態影響 56 5-2-1 雷射燒蝕速度對相變區之時間效應 57 5-2-2 雷射功率對相變區之時間效應 58 5-3 選擇性雷射燒熔(SLM)實驗 59 5-3-1 改質層區域分析 59 5-3-2 金屬粉末相變化區分析 60 5-4 選擇性雷射燒熔(SLM)數值模擬與實驗比較 61 第六章 結論與未來展望 109 6-1 結論 109 6-2 未來展望 111 參考文獻 113

    [1] I. Yadroitsev, P. Bertrand, and I. Smurov, “Parametric analysis of the selective laser melting process,” Appl. Surf. Sci., vol. 253, no. 19, pp. 8064–8069, 2007.
    [2] D. Wang, Y. Yang, X. Su, and Y. Chen, “Study on energy input and its influences on single-track,multi-track, and multi-layer in SLM,” Int. J. Adv. Manuf. Technol., vol. 58, no. 9–12, pp. 1189–1199, Feb. 2012.
    [3] A. Simchi, “Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features,” Mater. Sci. Eng. A, vol. 428, no. 1–2, pp. 148–158, 2006.
    [4] A. Hussein, L. Hao, C. Yan, and R. Everson, “Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting,” Mater. Des., vol. 52, pp. 638–647, 2013.
    [5] S. Mohanty and J. H. Hattel, “Numerical model based reliability estimation of selective laser melting process,” Phys. Procedia, vol. 56, no. C, pp. 379–389, 2014.
    [6] F. Abe, K. Osakada, M. Shiomi, K. Uematsu, and M. Matsumoto, “The manufacturing of hard tools from metallic powders by selective laser melting,” J. Mater. Process. Technol., vol. 111, no. 1–3, pp. 210–213, 2001.
    [7] W. M. Steen and J. Mazumder, Laser Material Processing, 4th ed. Springer-Verlag London Limited, 2010.
    [8] L. Quintino, A. Costa, R. Miranda, D. Yapp, V. Kumar, and C. J. Kong, “Welding with high power fiber lasers - A preliminary study,” Mater. Des., vol. 28, no. 4, pp. 1231–1237, 2007.
    [9] N. K. Tolochko, T. Laoui, Y. V. Khlopkov, S. E. Mozzharov, V. I. Titov, and M. B. Ignatiev, “Absorptance of powder materials suitable for laser sintering,” Rapid Prototyp. J., vol. 6, no. 3, pp. 155–160, 2000.
    [10] D. D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, “Laser additive manufacturing of metallic components: materials, processes and mechanisms,” Int. Mater. Rev., vol. 57, no. 3, pp. 133–164, 2012.
    [11] M. Badrossamay and T. H. C. Childs, “Further studies in selective laser melting of stainless and tool steel powders,” Int. J. Mach. Tools Manuf., vol. 47, no. 5 SPEC. ISS., pp. 779–784, 2007.
    [12] J. Y. Jeng and M. C. Lin, “Mold fabrication and modification using hybrid processes of selective laser cladding and milling,” J. Mater. Process. Technol., vol. 110, no. 1, pp. 98–103, 2001.
    [13] K. A. Mumtaz, P. Erasenthiran, and N. Hopkinson, “High density selective laser melting of Waspaloy??,” J. Mater. Process. Technol., vol. 195, no. 1–3, pp. 77–87, 2008.
    [14] L. Dong, A. Makradi, S. Ahzi, and Y. Remond, “Finite Element Analysis of Temperature and Density Distributions in Selective Laser Sintering Process,” Mater. Sci. Forum, vol. 553, pp. 75–80, 2007.
    [15] X. C. Wang, T. Laoui, J. Bonse, J. P. Kruth, B. Lauwers, and L. Froyen, “Direct selective laser sintering of hard metal powders: Experimental study and simulation,” Int. J. Adv. Manuf. Technol., vol. 19, no. 5, pp. 351–357, Mar. 2002.
    [16] D. Q. Zhang, Q. Z. Cai, J. H. Liu, L. Zhang, and R. D. Li, “Select laser melting of W-Ni-Fe powders: Simulation and experimental study,” Int. J. Adv. Manuf. Technol., vol. 51, no. 5–8, pp. 649–658, Nov. 2010.
    [17] I. A. Roberts, C. J. Wang, R. Esterlein, M. Stanford, and D. J. Mynors, “A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing,” Int. J. Mach. Tools Manuf., vol. 49, no. 12–13, pp. 916–923, 2009.
    [18] S. Kolossov, E. Boillat, R. Glardon, P. Fischer, and M. Locher, “3D FE simulation for temperature evolution in the selective laser sintering process,” Int. J. Mach. Tools Manuf., vol. 44, no. 2–3, pp. 117–123, 2004.
    [19] N. Contuzzi, S. L. Campanelli, and A. D. Ludovico, “3D finite element analysis in the Selective Laser Melting process,” Int. J. Simul. Model., vol. 10, no. 3, pp. 113–121, 2011.
    [20] K. Antony, N. Arivazhagan, and K. Senthilkumaran, “Numerical and experimental investigations on laser melting of stainless steel 316L metal powders,” J. Manuf. Process., vol. 16, no. 3, pp. 345–355, 2014.
    [21] J. Romano, L. Ladani, J. Razmi, and M. Sadowski, “Temperature distribution and melt geometry in laser and electron-beam melting processes - A comparison among common materials,” Addit. Manuf., vol. 8, pp. 1–11, 2015.
    [22] X.-T. Pham, “Two-Dimensional Rosenthal Moving Heat Source Analysis Using the Meshless Element Free Galerkin Method,” Numer. Heat Transf. Part A Appl., vol. 63, no. 11, pp. 807–823, 2013.
    [23] Comsol, Heat Transfer Module. COMSOL Inc., 2015.
    [24] H. Hu and S. a Argyropoulos, “Mathematical modelling of solidification and melting: a review,” Model. Simul. Mater. Sci. Eng., vol. 4, no. 4, pp. 371–396, 1999.
    [25] A. V. Gusarov and I. Smurov, “Modeling the interaction of laser radiation with powder bed at selective laser melting,” Phys. Procedia, vol. 5, no. PART 2, pp. 381–394, 2010.
    [26] A. V. Gusarov, “Homogenization of radiation transfer in two-phase media with irregular phase boundaries,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 77, no. 14, pp. 1–14, 2008.
    [27] K. Zeng, D. Pal, and B. E. Stucker, “A Review of Thermal Analysis Methods in Laser Sintering and Selective Laser Melting,” Proc. Solid Free. Fabr. Symp., pp. 796–814, 2012.
    [28] K. Zeng, D. Pal, N. Patil, and B. E. Stucker, “A New Dynamic Mesh Method Applied to the Simulation of Selective Laser Melting,” Proc. Solid Free. Fabr. Symp., pp. 549–559, 2013.
    [29] A. Beiser, Concepts of Modern Physics, 6th ed. McGraw-Hill Europe, 2002.
    [30] E. Assuncao and S. Williams, “Comparison of continuous wave and pulsed wave laser welding effects,” Opt. Lasers Eng., vol. 51, no. 6, pp. 674–680, 2013.
    [31] M. T. C. Chow, E. V. Bordatchev, and G. K. Knopf, “Experimental study on the effect of varying focal offset distance on laser micropolished surfaces,” Int. J. Adv. Manuf. Technol., vol. 67, no. 9–12, pp. 2607–2617, 2013.
    [32] W. E. King, A. T. Anderson, R. M. Ferencz, N. E. Hodge, C. Kamath, S. A. Khairallah, and A. M. Rubenchik, “Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges,” Appl. Phys. Rev., vol. 2, no. 4, p. 041304, 2015.
    [33] “How fibre lasers work,” Optoelectronics research centre based at the University of Southampton. [Online]. Available: http://www.orc.soton.ac.uk/61.html.
    [34] Z. Nie, G. Wang, J. D. McGuffin-Cawley, B. Narayanan, S. Zhang, D. Schwam, M. Kottman, and Y. (Kevin) Rong, “Experimental study and modeling of H13 steel deposition using laser hot-wire additive manufacturing,” J. Mater. Process. Technol., vol. 235, pp. 171–186, 2016.
    [35] V. G. GREGSON, “CHAPTER 4 – Laser Heat Treatment,” in Materials Processing: Theory and Practices, vol. 3, 1983, pp. 201–233.
    [36] J. Wang, C. Weng, J. Chang, C. Hwang, and I. Introduction, “The influence of temperature and surface conditions on surface absorptivity in laser surface treatment,” vol. 87, no. 7, 2000.
    [37] G. E. Totten, L. Xie, and K. Funatani, Modeling and Simulation for Material Selection and Mechanical Design. Marcel Dekker, 2005.
    [38] COMSOL, COMSOL Material Library. COMSOL Inc., 2015.
    [39] A. Wiesner, “Selective Laser Melting,” Laser-Journal, vol. 4, no. May 2016, pp. 54–55, 2008.
    [40] M. Mazur, M. Leary, M. McMillan, J. Elambasseril, and M. Brandt, “SLM Additive Manufacture of H13 Steel with Conformal Cooling and Lattice structures,” Rapid Prototyp. J., vol. 22, no. 4, pp. 1–25, 2016.
    [41] B. Wu, P. Wang, Y.-S. Pyoun, J. Zhang, and R. Murakami, “Study on the fatigue properties of plasma nitriding S45C with a pre-ultrasonic nanocrystal surface modification process,” Surf. Coatings Technol., vol. 216, pp. 191–198, 2013.
    [42] 東台精機股份有限公司
    [43] T. A. Palmer and J. W. Elmer, “Direct observations of the α --> γ transformation at different input powers in the heat-affected zone of 1045 C-Mn steel arc welds observed by spatially resolved X-ray diffraction,” Metall. Mater. Trans. A, vol. 36, no. 12, pp. 3353–3369, 2005.
    [44] J.-M. Drezet and S. Mokadem, “Marangoni Convection and Fragmentation in LASER Treatment,” Mater. Sci. Forum, vol. 508, no. February, pp. 257–262, 2006.

    無法下載圖示 校內:2021-07-14公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE