簡易檢索 / 詳目顯示

研究生: 馮馨潔
Feng, Hsin-Chieh
論文名稱: Beta型沸石觸媒於三酸甘油酯轉酯化反應以製備生質柴油之研究
Transesterification of Triglycerides for Biodiesel Production using pre-treated Zeolite Beta Catalysts
指導教授: 陳炳宏
Chen, Bing-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 109
中文關鍵詞: 生質柴油轉酯化反應沸石
外文關鍵詞: Biodiesel, Transesterification, Zeolite, Zeolite Beta
相關次數: 點閱:97下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於溫室效應造成地球暖化日益嚴重,加上有限的石油存量造成價格飆漲,開發替代能源將是刻不容緩的課題,而其中具有無毒性、可再生、生物可分解性及二氧化碳淨排放量趨近於零等優點的生質柴油(Biodiesel)更是受到各國重視。
    生質柴油透過轉酯化反應可將動植物油脂與低碳數醇類經觸媒催化而成,本研究利用Beta型沸石當作轉酯化反應的觸媒,從合成沸石、離子交換改質到轉酯化反應進行一系列的研究,並藉由改變反應參數如不同的金屬離子、金屬離子的含量、溫度、反應物比例等建立轉酯化反應較佳的條件。考慮到工業原料中可能含有脂肪酸和水分,所以實驗中也會探討脂肪酸和含水量對轉酯化反應的影響。
    本研究分三個部份,首先是沸石觸媒的合成,其次是沸石觸媒的改質,最後是轉酯化反應以生產生質柴油。實驗發現,170°C下反應3天所合成的Beta沸石於醇油觸媒比25:1:1 (w/w)及反應溫度60°C時進行轉酯化反應有不錯的效果,因其表面積大(503.96 m2/g)及Na2O含量高(0.55 wt%)的特性,所以未經改質就有不錯的轉酯化效率,6小時產率即可達到95 %。另外,利用氫氧化鈉改質觸媒後之生質柴油產率略有提升(8 wt%-eq, 4h, 98%),但由於強鹼易破壞觸媒降低重複使用性,故以未改質之Beta觸媒進行轉酯化反應較符合經濟性。
    利用商用觸媒814E型Beta沸石觸媒進行轉酯化反應,在固定離子交換時間的條件下改變鈉濃度,觸媒負載的鈉含量會隨著鈉濃度增加而增加,轉酯化效果亦然,用8 wt%-eq鈉濃度改質後的觸媒於轉酯化反應4小時後即可達到95 %之產率。另外,雖然水分對Beta的影響較小,但進料油中之游離脂肪酸的確會對轉酯化反應造成嚴重的影響,這部分仍是鹼催化轉酯化反應中待克服的問題。

    Nowadays, energy demand and consumption have increased dramatically with technological advancement, which causes the excessive emission of greenhouse gases and the global warming. Hence, it is necessary to develop an alternative and environmentally friendly energy resource to reduce the overconsumption of non-renewable fossil fuel. Out of various renewable energies, biodiesel, a mixture of long-chain fatty acid short-chain alkyl esters, has attracted more and more attention, due to its sustainability, biodegradability, and almost no extra carbon emission.
    In general, transesterification is a reaction of triglycerides with short-chain alcohols, commonly methanol. In this study, zeolite beta catalysts are employed to catalyze the transesterification reaction of triolein in excess methanol. First of all, zeolite beta catalysts are synthesized from Na2O•Al2O3, SiO2, tetraethylammonium hydroxide (TEAOH) and H2O. Subsequently, the as-prepared zeolite beta catalysts are modified via ion-exchange method to increase their catalysis in transesterification. For comparison, commercially available zeolite beta, Zeolyst 814E, is used as well. Effects of various parameters such as reaction temperature, catalyst loading, molar ratio of alcohol to oil, and reaction time have been studied. Optimum conditions are found as follows: the feed ratio (w/w) of methanol to triolein is 25 to 1, the feed ratio (w/w) of catalyst loadings to triolein is 1 to 1, a reaction temperature at 60 °C, a reaction time of 6 h, and a stirring speed of 300 rpm. At this condition, the conversion yield of the biodiesel is near 95 %. Finally, the effects of water content and free fatty acid to the transesterification reaction are also investigated and discussed.

    摘要 II Abstract III 致謝 IV 目錄 V 圖目錄 VIII 表目錄 X 第一章 緒論 1 1-1前言 1 1-2研究動機與目的 4 第二章 文獻回顧 6 2-1生質柴油之簡介 6 2-1-1生質柴油的起源 6 2-1-2植物油燃料 8 2-1-3生質柴油的原料 14 2-1-4生質柴油的特性 18 2-1-5生質柴油的標準規範 23 2-2轉酯化反應 27 2-2-1勻相鹼催化反應 29 2-2-2非勻相鹼催化反應 31 2-2-3勻相酸催化反應 35 2-2-4非勻相酸催化反應 37 2-3沸石觸媒 38 2-3-1沸石之簡介 38 2-3-2沸石之組成與結構 40 2-3-3 Beta沸石之結構 44 2-3-4沸石觸媒為載體之製備方法 47 2-3-5沸石之特性 48 2-3-6沸石之吸附能力 49 2-3-7沸石觸媒之應用 50 第三章 實驗 54 3-1研究架構 54 3-2實驗藥品 55 3-3實驗設備 57 3-4實驗方法 61 3-4-1酸性固體觸媒製備 61 3-4-2觸媒特性分析 61 3-4-3觸媒預處理 62 3-4-4脂肪酸甲酯檢量線的製作 62 3-4-5轉酯化反應 62 3-4-6脂肪酸甲酯產率分析 63 3-4-7觸媒回收再利用 63 第四章 結果與討論 64 4-1 觸媒催化生產生質柴油之可行性分析 64 4-1-1 GC與NMR檢測轉酯化產率之比較 66 4-2檢量線製作 69 4-3合成Beta沸石觸媒 70 4-3-1溫度對合成Beta沸石的影響 72 4-3-2反應時間對合成Beta沸石的影響 74 4-3-3水分對合成Beta沸石的影響 77 4-3-4 Beta沸石觸媒之BET檢測 78 4-4 Beta沸石觸媒之反應參數探討 80 4-4-1鈉濃度對觸媒改質及轉酯化反應的影響 80 4-4-2觸媒/油比例對轉酯化反應的影響 82 4-4-3甲醇/油比例對轉酯化反應的影響 84 4-4-4溫度對轉酯化反應的影響 85 4-4-5 Oleic acid對轉酯化反應的影響 86 4-5商用814E Beta沸石觸媒之反應參數探討 88 4-5-1鈉濃度對觸媒改質及轉酯化反應的影響 90 4-5-2金屬離子來源對觸媒改質及轉酯化反應的影響 93 4-5-3水分對轉酯化反應的影響 95 4-6觸媒回收再利用測試 97 第五章 結論 99 5-1結論 99 5-2建議 101 參考資料 102

    Alcantara R, Amores J, Canoira L, Fidalgo E, Franco MJ, Navarro A, Catalytic production of biodiesel from soy-bean oil, used frying oil and tallow. Biomass and Bioenergy, 18, 515-527, 2000.

    Atadashi IM, Aroua MK, Aziz ARA, Sulaiman NMN, The effects of catalysts in biodiesel production: A review. Journal of Industrial and Engineering Chemistry, 19, 14-26, 2013.

    Azcan N, Danisman A, Alkali catalyzed transesterification of cottonseed oil by microwave irradiation. Fuels, 86, 2639-2644, 2007.

    Barrer RM, Hydrothermal Chemistry of Zeolites. Academic Press, 1982.

    Bfiswe NA, Gasci JL, Daniels JA, Jchuson DW, Shannon MD, Stewart A, Studies in Surface Science and Catalysis. 49, 151, 1989.

    Breck DW, Zeolite Molecular Sieves. Wiley, 1974.

    Chung YC, Son DH, Ahn DH, Nitrogen and organics removal from industrial wastewater using natural zeolite media. Water Science and Technology, 42, 127-134, 2000.

    Clausse B, Garrot B, Cornier C, Paulin C, Simonnot-Grange MH, Boutros F, Adsorption of chlorinated volatile organic compounds hydrophobic faujasite- correlation between the thermodynamic and kinetic properties and the prediction of air clraning. Microporous and Mesoporous Materials, 25, 169-177, 1998.

    Colella C, Gualtieri AF, Cronstedt’s zeolite. Microporous and Mesoporous Materials, 105, 213-221, 2007.

    Corma A, Nemeth LT, Renz M, Valencia S, Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer-Villiger oxidations. Nature, 412, 423-425, 2001.

    Curry SM, Cubeddu R, Hansch TW, Appl. Phys. 1, 153, 1973.

    de Boer K, P.A. B, Supercritical methanol for fatty acid methyl ester production: A review. Biomass & Bioenergy, 35, 983-991, 2011.

    Demirbas A, Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Progress in Energy and Combustion Science, 31, 466-487, 2005.

    Demirbas A, Importance of biodiesel as transportation fuel. Energy Policy, 35, 4661-4670, 2007.

    Demirbas A, Biodiesel_A realistic fuel alternative for diesel engines. Springer, 208, 2008.

    Den Hollander MA, Wissink M, Makkee M, Moulijn JA, Gasoline conversion: reactivity towards cracking with equilibrated FCC and ZSM-5 catalysts. Applied Catalysis A: General, 223, 85-102, 2002.

    Dennis YCL, Xuan W, M.K.H. L, A review on biodiesel production using catalyzed transesterification. Applied Energy, 87, 1083-1095, 2010.

    Dorado MP, Ballestero sE, Exhaust emissions from a diesel engine fueled with transesterified waste olive oil. Fuel, 82, 1311-1315, 2003.

    Felizardo P, Neiva Correia MJ, Raposo I, Mendes JF, Berkemeier R, Bordado JM, Production of biodiesel from waste frying oils. Waste Management, 26, 487-494, 2006.

    Freedman B, Pryde E, Mounts T, Variables affecting the yields of fatty esters from transesterified vegetable oils. Journal of the American Oil Chemists' Society, 61, 1638-1643, 1984.

    Gelbard G, Brès O, Vargas RM, Vielfaure F, Schuchardt UF, 1H nuclear magnetic resonance determination of the yield of the transesterification of rapeseed oil with methanol. Journal of the American Oil Chemists' Society, 72, 1239-1241, 1995.

    Georgogianni KG, Kontominas MG, Tegou E, Avlonitis D, Gergis V, Biodiesel production: reaction and process parameters of alkali-catalyzed transesterification of waste frying oils. Energy and Fuels, 21, 3023-3027, 2007.

    Gisvold B, Odegaarf H, Enhanced removal of ammonium by combined nitrification /adsorption in expanded clay aggregate filters. Water Science and Technology, 41, 107-114, 2000.

    Harland CE, Ion exchange Theory and Practice. Royal Society of Chemistry Paperbacks, 2nd ed1994.

    Harry R, Verified syntheses of zeolitic materials. Elsevier, 2nd Edition, 117, 2001.

    Inglezakis VJ, Zorpas AA, Loizidou MD, Grigoropoulou HP, The effect of competitive cations and anions on ion exchange of heavy metals. Separation and Purification Technology, 46, 202-207, 2005.

    Jens W, Zeolites and catalysis. Solid State Ionics, 131, 175-188, 2000.

    Kalligeros S, Zannikos F, Stournas S, Lois E, Anastopoulos G, Teas CH, Sakellaropoulos F, An investigation of using biodiesel/marine diesel blends on the performance of a stationary diesel engine. Biomass and Bioenergy, 24, 141-149, 2003.

    Karmee SK, Chadha A, Preparation of biodiesel from crude oil of Pongamia pinnata. Bioresource Technology, 96, 1425-1429, 2005.

    Keera ST, Sabagh SME, Taman AR, Transesterification of vegetable oil to biodiesel fuel using alkaline catalyst. Fuel, 90, 42-47, 2011.

    Knothe G, Steidley KR, Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel, 84, 1059-1065, 2005.

    Lam MK, Lee KT, Mohamed AR, Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnology Advances, 28, 500-518, 2010.

    Lang X, Dalai AK, Bakhshi NN, Reaney MJ, Hertz PB, Preparation and characterization of bio-diesels from various bio-oils. Bioresource Technology, 80, 53-62, 2001.

    Lee HK, Shim MJ, Lee JS, Kim SW, Characteristics of CO gas adsorption on modified natural zeolite. Materials Chemistry and Physics, 44, 79-84, 1996.

    Leung DYC, Wu X, Leung MKH, A review on biodiesel production using catalyzed transesterification. Applied Energy, 87, 1083-1095, 2010.

    Lotero E, Liu Y, Lopez DE, Suwannakarn K, Bruce DA, Goodwin JG, Synthesis of Biodiesel via Acid Catalysis. Industrial & Engineering Chemistry Research, 44, 5353-5363, 2005.

    Ma F, Clements LD, Hanna MA, The effects of catalyst, free fatty acids, and water on transesterification of beef tallow. Transactions of the Asae, 41, 1261-1264, 1998.

    Ma F, Hanna MA, Biodiesel production: a review. Bioresource Technology, 70, 1-15, 1999.

    McBain JW, The Sorption of Gases and Vapours by Solids. Routledge, Chapter 5, 79, 1932.

    McCormick RL, Ratcliff M, Moens L, Lawrence R, Several factors affecting the stability of biodiesel in standard accelerated tests. Fuel Processing Technology, 88, 651-657, 2007.

    McLeary EE, Jansen JC, Kapteijn F, Microporous Mesoporous Mater. 90, 198-220, 2006.

    Meier WJ, Olson D, Altas of Zeolite Structure types. Butterworths, 1992.

    Niehaus RA, Goering CE, Savage LD, S.C. JS, Cracked soybean oil as a fuel
    for a diesel engine. Transactions of the ASAE, 29, 683-689, 1986.

    Öhman LO, Ganemi B, Björnbom E, Rahkamaa K, Keiski RL, Paul J, Catalyst preparation through ion-exchange of zeolite Cu-, Ni-, Pd-, CuNi- and CuPd-ZSM-5. Materials Chemistry and Physics, 73, 263-267, 2002.

    Pinna F, Supported metal catalysts preparation. Catalysis Today, 41, 129-137, 1998.

    Schwab A, Bagby M, Freedamn B, Preparation and properties of fuels from vegetable oils. Fuel, 66, 1372-1378, 1987.

    Schwab A, D.G., Selke E, Sorenson S, Pryde E, Diesel fuel from thermal decomposition of soybean oil. Journal of the American Oil Chemists' Society, 65, 1781-1786, 1988.

    Shay EG, Diesel fuel from vegetable oils: Status and opportunities. Biomass and Bioenergy, 4, 227-242, 1993.

    Taguchi A, Schüth F, Ordered mesoporous materials in catalysis. Microporous and Mesoporous Materials, 77, 1-45, 2005.

    Tan KT, K.T. L, A.R. M, Effects of free fatty acids, water content and co-solvent on biodiesel production by supercritical methanol reaction. Journal of Supercritical Fluids, 53, 88-91, 2010.

    Tashtoush GM, Al-Widyan MI, Al-Jarrah MM, Experimental study on evaluation and optimization of conversion of waste animal fat into biodiesel. Energy Conversion and Management, 45, 2697-2711, 2004.

    Treacy MMJ, Higgins JB, Collection of Simulated XRD Powder Patterns for Zeolites. Elsevier, 79, 2001.

    Tricoli V, Nannetti F, Zeolite-Nafion composites as ion conducting membrane materials. Electrochimica Acta, 48, 2625~2633, 2003.

    University of Idaho, Biodegradability of biodiesel in the aquatic environment. development of rapeseed biodiesel for use in high-speed diesel engine
    Progress report, 96-131, 1996.

    Van der Waal JC, van Bekkum H, Molecular Sieves, Multifunctional Microporous Materials in Organic Synthesis. Journal of Porous Materials, 5, 289-303, 1998.

    Vincente G, Martinez M, Aracil J, Integrated biodiesel production: a comparison of different homogeneous catalysts system. Bioresource Technology, 922004.

    Weitkamp J, Zeolites and catalysis. Solid State Ionics, 131, 175-188, 2000.

    Zheng S, Kates M, Dube MA, McLean DD, Acid-catalyzed production of biodiesel from waste frying oil. Biomass & Bioenergy, 30, 267-272, 2006.

    Zorpas AA, Constantinides T, Vlyssides A, Haralambous GI, Loizidou M, Heavy metal uptake by natural zeolite and metals partitioning in sewage sludge compost. Bioresource Technology, 72, 113-119, 2000.


    生質柴油之技術與文獻探討,http://www.taiwan921.lib.ntu.edu.tw/mypdf/bd01.pdf,2007。

    李昌珠、蔣麗娟、程樹棋,生物柴油--綠色能源,化學工業出版社.,2007。

    吳榮宗,工業觸媒概論,國興出版社,247,1989。

    周昕妤,應用擔載Na+的Y型沸石觸媒於三酸甘油酯轉酯化反應以製備生質柴油之研究,2012。

    張冠杰、朱建良,國內外生質柴油研究生產現狀及發展趨勢,化工期刊,18(1),2004。

    經濟部能源局,http://web3.moeaboe.gov.tw/ECW/populace/home/Home.aspx。

    詹逸涵,Amberlite IR-120陽離子交換樹脂於游離脂肪酸甲酯化之研究,2011。

    霍俊文,以硫酸處理之二氧化鋯觸媒對於游離脂肪酸甲酯化反應之研究,2010。

    無法下載圖示 校內:2018-08-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE