簡易檢索 / 詳目顯示

研究生: 徐美婷
Choi, Mei Teng
論文名稱: 多位點序列分型分析南台灣念珠菌血症中的熱帶念珠菌
Multilocus sequence typing of Candida tropicalis blood isolates in Southern Taiwan
指導教授: 蔡佩珍
Tsai, Pei-Jane
學位類別: 碩士
Master
系所名稱: 醫學院 - 醫學檢驗生物技術學系
Department of Medical Laboratory Science and Biotechnology
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 31
中文關鍵詞: 熱帶念珠菌三唑抗藥多重序列分型
外文關鍵詞: C. tropicalis, triazole resistance, multilocus sequence typing
相關次數: 點閱:49下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱帶念珠菌是主要引起院內念珠菌血症的致病菌之一,主要是感染免疫力低下的病人,特別是嗜中性白細胞低下的病人。熱帶念珠菌對於治療念珠菌血症的三唑藥物敏感度有下降的趨勢。對2011到2014年成大醫院從念珠菌血症中所分離的102株熱帶念珠菌的藥物敏感度進行回溯性研究。藥敏測試是利用先特真菌藥敏測試盤作分析,測試包含了9 種不同的抗真菌藥物。藥敏的結果顯示成大醫院的菌株對於三唑類藥物氟康唑(Fluconazole)和伏立康唑(Voriconazole),抗藥率分別為20.6%和16.7%。利用多重序列分型(MLST)分析這些菌株的親源關係。從102株菌株當中發現56種不同的DST,當中有33種為新的DST。利用樹狀圖分析菌株之間的親源關係與對藥物敏感度的關聯性。結果顯示親源關係較相近的菌株對於伏立康唑表示出較接近的敏感度,氟康唑的敏感度與親源關係沒有表現出關聯性。同源複合物(clonal cluster)利用最小生成樹和eBURST去作分析,利用eBURST分析後共分成7組,結果顯示同屬同一組別對藥物表現出相似的敏感度。第7組內富含對三唑抗藥的菌株。本研究對於南台灣的熱帶念珠菌的藥物敏感度和多重基因序列分型有了進一步的了解。

    Candida tropicalis is one of most important pathogens cause nosocomial candidemia and mainly cause infection in immunocompromised patients, especially in neutropenic patients. C. tropicalis show decrease the susceptible to candidemia therapy Triazole. A retrospective review of candidemia of C. tropicalis in National Cheng Kung University Hospital was conducted during 2011-2014. 102 isolates from blood cultures were enrolled in this study. The antifungal susceptibility determine by SensititreTM YeastOneTM with nine antifungal drugs. Antifungal susceptibility testing revealed that 20.6% were fluconazole resistance and 16.7% were voriconazole resistance. The genetic relatedness of 102 isolates were determined by Multilocus sequence typing (MLST). 56 different DSTs were identified in 102 isolates and 33 DSTs were new to database. The correlation between genetic relatedness and drug susceptibility was determine by UPGMA dendrogram. The result showed that genetic relatedness was more related to susceptibility of voriconazole than fluconazole. The clonal cluster was determined by Minimum Spanning tree and eBURST analysis which revealed 7 groups and the same eBURST group represent similar drug susceptibility. In addition, the triazole-resistance isolates were clustered in group 7. The present work extends the current understanding of antifungal susceptibility pattern and MLST typing of C. tropicalis in southern Taiwan.

    CONTENTS 中文摘要 I ABSTRACT II 誌謝III CONTENTS IV Chapter 1. INTRODUCTION 1 1.1 Epidemiology of Candida tropicalis 1 1.2 Pathogenesis of Candida tropicalis 1 1.3 Host immune response for Candida tropicalis infection 2 1.4 Type of Candidiasis 3 1.5 Antifungal therapy for Candida tropicalis infection 4 1.6 Antifungal susceptibility of Candida tropicalis 5 1.7 Azoles resistance mechanism of Candida tropicalis 6 1.8 Multilocus sequence typing 7 1.9 The DSTs related to drug resistance 7 Chapter 2. METERIALS AND METHOD 8 2.1 fungal strains 8 2.2 fungal culture 8 2.3 Antifungal susceptibility test 8 2.4 DNA Extraction of C. tropicalis 9 2.5 PCR amplification and sequencing 10 2.6 MLST data analysis and eBURST 10 Chapter 3.RESULT 11 3.1 Antifungal susceptibility of 102 clinical C. tropicalis isolates from blood 11 3.2 Result of 102 C. tropicalis clinical isolates differentiation by MLST 12 3.3 The predominant allele number of six C. tropicalis gene fragments used for MLST in Taiwan 13 3.4 Phylogenetic analysis and result of eBURST 13 3.5 The DSTs of triazole-resistance isolates 14 Chapter 4. DISCUSION 15 REFERENCES 17 APPENDIX 31 APPENDIX 1 List of primers used in this study 31 APPENDIX 2 Recipes of buffers 31

    1. Report of Noscomial Infections Surveillance System from Taiwan CDC,2013
    2. Nettleman, M.D., et al., Secular trends in the epidemiology of nosocomial fungal infections at a teaching hospital in Taiwan, 1981 to 1993. Infection Control & Hospital Epidemiology, 1997. 18(5): p. 369-375.
    3. Tan, B.H., et al., Incidence and species distribution of candidaemia in Asia: a laboratory-based surveillance study. Clinical Microbiology and Infection, 2015. 21(10): p. 946-953.
    4. Sandford, G., et al., The value of fungal surveillance cultures as predictors of systemic fungal infections. Journal of infectious Diseases, 1980. 142(4): p. 503-509.
    5. Silva, S., et al., Adherence and biofilm formation of non-Candida albicans Candida species. Trends in microbiology, 2011. 19(5): p. 241-247.
    6. Galan-Ladero, M., et al., Enzymatic activities of Candida tropicalis isolated from hospitalized patients. Medical mycology, 2010. 48(1): p. 207-210.
    7. Luo, G., L.P. Samaranayake, and J.Y. Yau, Candida species exhibit differential in vitro hemolytic activities. Journal of clinical microbiology, 2001. 39(8): p. 2971-2974.
    8. Thompson, D.S., P.L. Carlisle, and D. Kadosh, Coevolution of morphology and virulence in Candida species. Eukaryotic cell, 2011. 10(9): p. 1173-1182.
    9. Gao, N. and C. Chen, Candida Infections: An Update on Host Immune Defenses and Anti-Fungal Drugs. Infectious Diseases and Translational Medicine, 2016. 2(1): p. 30-40.
    10. Uppuluri, P., et al., Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS pathogens, 2010. 6(3): p. e1000828.
    11. Porman, A.M., et al., Discovery of a phenotypic switch regulating sexual mating in the opportunistic fungal pathogen Candida tropicalis. Proceedings of the National Academy of Sciences, 2011. 108(52): p. 21158-21163.
    12. Ene, I.V. and R.J. Bennett, The cryptic sexual strategies of human fungal pathogens. Nat Rev Microbiol, 2014. 12(4): p. 239-51.
    13. Gozalbo, D., et al., Candida and candidiasis: the cell wall as a potential molecular target for antifungal therapy. Current Drug Targets-Infectious Disorders, 2004. 4(2): p. 117-135.
    14. Iliev, I.D., et al., Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science, 2012: p. 1221789.
    15. Wingard, J.R., W.G. Merz, and R. Saral, Candida tropicalis: a major pathogen in immunocompromised patients. Annals of Internal Medicine, 1979. 91(4): p. 539-543.
    16. Svobodová, E., et al., Differential interaction of the two related fungal species Candida albicans and Candida dubliniensis with human neutrophils. The Journal of Immunology, 2012: p. 1200185.
    17. Milner, J.D. and S.M. Holland, The cup runneth over: lessons from the ever-expanding pool of primary immunodeficiency diseases. Nature Reviews Immunology, 2013. 13(9): p. 635.
    18. Whibley, N., et al., Delinking CARD9 and IL-17: CARD9 Protects against Candida tropicalis Infection through a TNF-α–Dependent, IL-17–independent mechanism. The Journal of Immunology, 2015: p. 1500870.
    19. Puebla, L.E.J., Fungal infections in immunosuppressed Patients, in Immunodeficiency. 2012, InTech.
    20. Sravanthi, V., et al., A review on candidiasis: types and medications. PharmaTutor, 2014. 2(9): p. 36-45.
    21. Hamill, R.J., Amphotericin B formulations: a comparative review of efficacy and toxicity. Drugs, 2013. 73(9): p. 919-934.
    22. Sau, K., et al., The antifungal drug amphotericin B promotes inflammatory cytokine release by a Toll-like receptor-and CD14-dependent mechanism. Journal of Biological Chemistry, 2003. 278(39): p. 37561-37568.
    23. Wingard, J.R., et al., Clinical significance of nephrotoxicity in patients treated with amphotericin B for suspected or proven aspergillosis. Clinical infectious diseases, 1999. 29(6): p. 1402-1407.
    24. Whaley, S.G., et al., Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species. Frontiers in microbiology, 2017. 7: p. 2173.
    25. Chapman, S.W., D.C. Sullivan, and J.D. Cleary, In search of the holy grail of antifungal therapy. Transactions of the American Clinical and Climatological Association, 2008. 119: p. 197.
    26. Orozco, A.S., et al., Mechanism of Fluconazole Resistance inCandida krusei. Antimicrobial agents and chemotherapy, 1998. 42(10): p. 2645-2649.
    27. Pemán, J., E. Cantón, and A. Espinel-Ingroff, Antifungal drug resistance mechanisms. Expert review of anti-infective therapy, 2009. 7(4): p. 453-460.
    28. Vermes, A., H.-J. Guchelaar, and J. Dankert, Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. Journal of Antimicrobial Chemotherapy, 2000. 46(2): p. 171-179.
    29. Hospenthal, D.R. and J.E. Bennett, Flucytosine monotherapy for cryptococcosis. Clinical infectious diseases, 1998. 27(2): p. 260-264.
    30. Kathiravan, M.K., et al., The biology and chemistry of antifungal agents: a review. Bioorg Med Chem, 2012. 20(19): p. 5678-98.
    31. Yang, Y.-L., et al., Susceptibilities of Candida species to amphotericin B and fluconazole: the emergence of fluconazole resistance in Candida tropicalis. Infection Control & Hospital Epidemiology, 2004. 25(1): p. 60-64.
    32. Yang, Y.-L., et al., Susceptibilities to amphotericin B and fluconazole of Candida species in Taiwan Surveillance of Antimicrobial Resistance of Yeasts 2006. Diagnostic microbiology and infectious disease, 2008. 61(2): p. 175-180.
    33. Yang, Y.-L., et al., Species distribution and drug susceptibilities of Candida isolates in TSARY 2010. Diagnostic microbiology and infectious disease, 2013. 76(2): p. 182-186.
    34. Zhou, Z.-L., et al., The distribution and drug susceptibilities of clinical Candida species in TSARY 2014. Diagnostic microbiology and infectious disease, 2016. 86(4): p. 399-404.
    35. Tan, T.Y., et al., Antifungal susceptibility of invasive Candida bloodstream isolates from the Asia-Pacific region. Med Mycol, 2016. 54(5): p. 471-7.
    36. Jiang, C., et al., Mechanisms of azole resistance in 52 clinical isolates of Candida tropicalis in China. J Antimicrob Chemother, 2013. 68(4): p. 778-85.
    37. Choi, M.J., et al., Resistance Mechanisms and Clinical Features of Fluconazole-Nonsusceptible Candida tropicalis Isolates Compared with Fluconazole-Less-Susceptible Isolates. Antimicrob Agents Chemother, 2016. 60(6): p. 3653-61.
    38. Jiang, C., et al., The Role of UPC2 Gene in Azole-Resistant Candida tropicalis. Mycopathologia, 2016. 181(11-12): p. 833-838.
    39. Tan, J., et al., The A395T mutation in ERG11 gene confers fluconazole resistance in Candida tropicalis causing candidemia. Mycopathologia, 2015. 179(3-4): p. 213-218.
    40. Pavón, A.B.I. and M.C. Maiden, Multilocus sequence typing, in Molecular Epidemiology of Microorganisms. 2009, Springer. p. 129-140.
    41. Tavanti, A., et al., Multilocus Sequence Typing for Differentiation of Strains of Candida tropicalis. J Clin Microbiol, 2005. 43(11): p. 5593-600.
    42. Chou, H.-H., et al., Multilocus sequence typing of Candida tropicalis shows clonal cluster enriched in isolates with resistance or trailing growth of fluconazole. Diagnostic microbiology and infectious disease, 2007. 58(4): p. 427-433.
    43. Li, S.-Y., et al., Two closely related fluconazole-resistant Candida tropicalis clones circulating in Taiwan from 1999 to 2006. Microbial Drug Resistance, 2009. 15(3): p. 205-210.
    44. Chen, K.-W., et al., The molecular epidemiology of serial Candida tropicalis isolates from ICU patients as revealed by multilocus sequence typing and pulsed-field gel electrophoresis. Infection, Genetics and Evolution, 2009. 9(5): p. 912-920.
    45. Wang, Y., et al., Multilocus sequence typing of Candida tropicalis shows clonal cluster enrichment in azole-resistant isolates from patients in Shanghai, China. Infection, Genetics and Evolution, 2016. 44: p. 418-424.
    46. Huang, Y.T., et al., Antifungal Susceptibilities of Candida Isolates Causing Bloodstream Infections at a Medical Center in Taiwan, 2009-2010. Antimicrob Agents Chemother, 2014. 58(7): p. 3814-9.
    47. Okada, H., et al., Isocitrate lyase and malate synthase of Candida tropicalis grown on different carbon sources. Agricultural and biological chemistry, 1987. 51(3): p. 869-875.
    48. Zuza-Alves, D.L., W.P. Silva-Rocha, and G.M. Chaves, An Update on Candida tropicalis Based on Basic and Clinical Approaches. Front Microbiol, 2017. 8.
    49. Fan, X., et al., Multilocus sequence typing indicates diverse origins of invasive Candida tropicalis isolates in China. Chin Med J (Engl), 2014. 127(24): p. 4226-34.
    50. Lo, H.-J., et al., Fruits as the vehicle of drug resistant pathogenic yeasts. Journal of Infection, 2017. 75(3): p. 254-262.

    下載圖示 校內:2023-09-01公開
    校外:2023-09-01公開
    QR CODE