簡易檢索 / 詳目顯示

研究生: 朱建儒
Chu, Chien-Ju
論文名稱: 異質衝擊噴流霧化與混合之研究
Atomization and Mixing of Unlike-Doublet Impinging Jets
指導教授: 賴維祥
Lai, Wei-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 127
中文關鍵詞: 混合異質衝擊式霧化噴霧
外文關鍵詞: impinging jets, unlike-doublet, atomization, mixing
相關次數: 點閱:62下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 衝擊式噴霧由兩股或多股噴流相互衝擊碰撞產生霧化,被廣泛應用於小型雙推進劑液態火箭。在實際火箭的操作狀況中,衝擊碰撞的過程不僅會使得燃料和氧化劑產生霧化並且完成混合的行為。
    本研究以酒精和純水作為兩異質溶液,探討異質衝擊霧化與混合特性,並且與同質純水衝擊霧化的結果作比較。研究的內容包括衝擊液膜型態、衝擊霧化特性的流場觀測、霧化液滴的平均粒徑分佈,和異質流場混合分佈。
    在衝擊液膜的型態方面,和同質衝擊液膜現象不同的是,異質衝擊液膜在60˚衝擊角會存在著一過渡模式,90˚衝擊角在封閉液緣模式和開放液緣模式下會有波狀破裂模式出現。另一方面,異質液膜的液膜生成的穩定性較同質的液膜差,在封閉液緣下的長寬比呈現先降後昇趨勢,不同於同質液膜幾乎成定值的現象。
    對於衝擊霧化的特性而言,液膜偏移角度與理論推導的結果相當符合。同質衝擊霧化不管在與液膜平行或垂直的方向上都呈現對稱的形狀,然而,異質衝擊霧化僅在與液膜垂直的方向上呈現對稱的形狀,在液膜平行的方向上,則出現霧化中心些微的偏移,使得液膜產生彎曲的現象。另一方面,在不同孔徑的衝擊組合中可以明顯觀察到,由於噴流碰撞接觸的部分動量分佈不平衡,所造成的液膜彎曲現象。
    經由粒徑量測的結果分析,同質和異質衝擊霧化液滴的平均粒徑皆隨著噴流速度與衝擊角度變大而減小,其減小的趨勢會隨噴流速度加大而逐漸的變緩,並且在側向位置(與液膜平行方向)上顯示對稱的粒徑分佈。然而,在正向位置(與液膜垂直方向)上,異質霧化的液滴粒徑分佈為非對稱性,原因與液膜的彎曲變形和液滴的局部混合的物理性質不同有關。一般而言,異質衝擊霧化液滴受到其工作流體的物理性質影響,使得其粒徑的大小分佈小於同質衝擊霧化液滴。
    在異質流場混合分佈方面,霧化的中心剖面在側向位置上密度幾乎不變。在正向位置上,密度的趨勢皆呈遞減的狀態,較大密度的分佈在較小密度噴流下方處,顯示兩股噴流在碰撞後,經過霧化混合狀態後,仍沿著原先的動量方向前進。此現象為穿透式霧化模式,當噴流速度與衝擊角度越大,會使得穿透式霧化越為明顯。

    Atomization of impinging jets is generated by the impingement of two or more liquid streams of the bipropellant liquid rocket. Fuel and oxidizer are impinged on each other in practical rocket engines, the outcome of which is spray of the liquid into small drops and mixing of both of them.
    The objectives of this study are to investigate the flow patterns, atomization characteristics, mean droplet size (SMD), and mixture ratio distribution of the unlike-doublet impinging jets. Most of the experimental results are compared with those of like-doublet impinging jets.
    For the flow patterns of unlike-doublet impinging jets, there exists a transition mode under 60˚ impingement. For 90˚ impingement, wave mode appears in close rim and open rim mode. On the other hand, it is noted that the flow pattern of unlike-impinging jets is more unstable than the like one because of the difference of liquid property.
    For the other atomization characteristic, the deviation angle of sheet related to the resultant momentum is consistent with theoretical prediction. The spray distribution of like-doublet impingement is symmetric in both lateral and normal direction of sheet. However, the unlike-doublet one is symmetric only in normal direction. In lateral direction, the center of the spray reveals a little shift, which makes a bend of the spray. The phenomenon of bend sheet becomes more obvious for impinging jets with different orifice diameter.
    The SMD of like- and unlike-impingement decreases with the increase of jet velocity and impinging angle. For unlike-impingement, it reveals asymmetric distribution in normal position. This should be caused by the bend of the spray and local mixing droplet of different physical property. Results also show that the SMD is smaller for the unlike-doublet impingement then the like-doublet impingement.
    As the mixture ratio distribution is concerned, the region of higher density appears below the jet of lower density, the density changes linearly in the direction of jets. It reveals that both unlike liquid streams penetrate through each other, and still maintain in the original direction of jet momentum after impingement. The phenomenon is based on transmitive atomization, the higher the jet velocity and the impinging angle, the higher the degree of stream crossing.

    摘要 英文摘要 誌謝 目錄 1 表目錄 V 圖目錄 VI 符號說明 X 第一章 緒論 1 1-1 簡介 1 1-2 文獻回顧 3 1-2-1 噴霧型式的探討 3 1-2-2 液膜之碎裂機制 5 1-2-3 液滴平均粒徑 9 1-2-4 異質噴流衝擊霧化與混合 11 1-3 研究動機 14 第二章 實驗設備與儀器 16 2-1 實驗設備 16 2-1-1 衝擊式噴注器組 16 2-1-2 流體供應系統 16 2-1-3 測試台架 16 2-1-4 抽氣系統 17 2-1-5 小型液態火箭噴注器 17 2-2 量測儀器 17 2-2-1 影像擷取系統 17 2-2-2 霧化液滴粒徑量測系統 18 2-2-3 質量收集器 19 2-3 主要參數 19 第三章 實驗步驟及方法 20 3-1 實驗量測條件 20 3-2 流量的量測及校正 20 3-3 視流場的觀測方式 21 3-4 Insitec雷射繞射粒徑分析儀的量測 22 3-5 質量收集器測量方法 23 3-6 混合密度換算混合比例方法 23 第四章 結果與討論 24 4-1 噴注器的參數影響 24 4-2 液膜的型態 25 4-2-1 同質(純水+純水)液膜在衝擊角度90˚的型態 25 4-2-2 異質(酒精+純水)液膜在衝擊角度60˚的型態 26 4-2-3 異質(酒精+純水)液膜在衝擊角度90˚的型態 28 4-2-4 同質(純水+純水)與異質(酒精+純水)液膜形態比較 29 4-2-5 同質(純水+純水)與異質(酒精+純水)液膜的長寬比 30 4-3 液膜偏移角 31 4-3-1 異質液膜偏移角變化 32 4-3-2 偏移角理論值與實驗值比較 32 4-4 霧化流場俯視觀察 33 4-4-1 同質(純水+純水)衝擊霧化分佈 33 4-4-2 異質(酒精+純水)衝擊霧化分佈 34 4-5 霧化液滴平均粒徑 34 4-5-1 霧化液滴在液膜中心正下方粒徑分佈 35 4-5-2 同質霧化液滴在不同位置上粒徑分佈 36 4-5-3 異質霧化液滴在不同位置上粒徑分佈 38 4-5-4 同質與異質霧化液滴粒徑比較 41 4-6 異質霧化流場混合分佈 44 4-6-1 衝擊角度60°平面混合分佈 44 4-6-2 衝擊角度90°平面混合分佈 46 4-6-3 霧化中心剖面混合密度與混合比 47 4-7 小型液態火箭噴注器診測 50 4-7-1 霧化流場觀察 50 4-7-2 霧化液滴粒徑量測 52 4-8 不同孔徑衝擊霧化特性 52 第五章 結論 54 第六章 未來工作 57 參考文獻 58 自述 127

    1. Lefebvre, A. H., Atomization and Spray, Hemisphere Publication Corporation, 1989.
    2. Sutton, G. P., Oscar B., Rocket Propulsion Elements, Seventh Edition, 2001.
    3. Heidmann, M. F., Priem, R. J., Humphrey, J. C., “A Study of Sprays Formed by Two Impinging Jets,” NACA TN-3835, 1957.
    4. Kline, M. C., Woodward, R. D., Burch, R. L., Cheung, F. B., Kuo, K. K., “Imaging of Impinging Jet Breakup and Atomization Processes Using Cooper– Vapor– Laser– Sheet– Illuminated Photography,” Non-Intrusive Combustion Diagnostics, edited by K. K. Kuo and T. P. Parr , Begell House, Inc. New York, NY, December, 1994, pp. 552-568.
    5. Lai, W. H., Huang, W., and Jiang, T. L., “Characteristic Study on The Like-Doublet Impinging Jets Atomization,” Atomization and Sprays, vol. 9, 1999, pp. 277-289.
    6. 黃祖宏, 黃文榮, 賴維祥, 江滄柳, “液體之黏滯性對衝擊式注油器霧化特性之研究,” 中華民國第八屆燃燒科技應用研討會, 台南市, 民國87年3月20-21日, pp.433-438.
    7. Taylar, G. I., “Formation of Thin Flat Sheets of Water,” Proceedings of the Royal Society of London, Vol.259, pp.1-17, 1960.
    8. Hasson, D., Peck, R. E., “Thickness Distribution in a Sheet Formed by Impinging Jets,” AICHE Journal, Sept. 1964, pp. 752-754.
    9. Ibrahim, E. A., Prezkwas, A. J., “Impinging Jets Atomization,” Phys. Fluids A, vol. 3, No. 12, 1991, pp. 2981-2987.
    10. Weihs, D., “Stability of Thin, Radially Moving Liquid Sheets,” Journal of Fluid Mechanism, Vol. 87, Part 2, 1978, pp. 289-298.
    11. Huang, J. C. P., “The Break-up of Axisymmetric Liquid Sheets,” Journal of Fluid Mechanics, Vol. 43, Part 2, 1970, pp. 305-319
    12. Squire, H. B., “Investigation of the Instability of a Moving Liquid Film,” British J. of Applied Physics, Vol. 4, 1953, pp. 167-169.
    13. Dombrowski, N., Johns, W. R., “The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets,” Chemical Engineering Science, Vol. 18, 1963, pp. 203-214.
    14. Dombrowski, N., Hooper, P. C., “A Study of the Sprays Formed by Impinging Jets in Laminar and Turbulent Flow,” Journal of Fluid Mechanics, Vol. 18, Part 3, 1963, pp. 392-400.
    15. Ryan, H. M., Anderson, W. E., and Santoro, R. J., “Atomization Characteristics of Impinging Liquid Jets,” Journal of Propulsion and Power, vol. 11, No. 1, 1995, pp. 135-145.
    16. Chojnacki, K. T., and Feikema, D. A., “Study of Non-Newtonian Liquid Sheets Formed by Impinging Jets,” AIAA 97-3335, 33rd AIAA/ ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Seattle, WA, July 6-9, 1997.
    17. Kang, B. S., Shen, Y. B., and Poulikakos, D., “Holography Experiments in the Breakup Region of A Liquid Sheet Formed by Two Impinging Jets,” Atomization and Spray, vol. 5, 1995, pp. 387-402.
    18. Kang, B. S., and Poulikakos, D., “Holography Experiments in a Dense High-Speed Impinging Jet Spray,” Journal of Propulsion and Power, vol. 12, No. 2, 1996, pp. 341-348.
    19. Shen, Y. B. and Poulikakos, “Thickness Variation of a Liquid Sheet Formed by Two Impinging Jets Using Holography,” Journal of Fluids Engineering, vol. 12, 1998, pp. 482-488.
    20. Choo, Y. J., and Kang, B. S., “Parametric Study on Impinging-jet Liquid Sheet Thickness Distribution Using an Interferometric Method,” Experiments in Fluids, vol. 31, 2001, pp. 56-62.
    21. Choo, Y. J., and Kang, B. S., “Velocity variation of The Liquid Sheet Formed by Two Low-Speed Impinging Jets,” Proceedings of ILASS-Asia, Busan, Korea, Oct. 11-13, 2001, pp. 70-75.
    22. Couto, H. S., Bastos-Netto, D., “Modeling Droplet Size Distribution from Impinging Jets,” Journal of Propulsion and Power, vol. 7, No. 4, 1991, pp. 654-656
    23. Couto, H. S., Bastos-Netto, D., and Migueis, C. E., “Modeling of The Initial Droplet Size Distribution Function In The Spray Formed by Impinging Jets,” Journal of Propulsion and Power, vol. 8, No. 3, 1992, pp. 725-728.
    24. Anderson, W. E., Ryan, H. M., Pal S., and Santoro, R. J., “Fundamental Studies of Impinging Liquid Jets,” AIAA 92-0458, 30st Aerospace Sciences Meeting & Exhibit, Reno, NV, Jan. 6-9, 1992.
    25. Vassallo, P., Ashgriz, N., and Boorady, F. A., “Effect of Flow Rate on The Spray Characteristics of Impinging Water Jets,” Journal of Propulsion and Power, vol. 8, No. 5, pp. 980-986, 1992.
    26. Rupe, J. H., “A Correlation of between the Dynamics Properties of a Pair Impinging Streams and the Uniformity of Mixture-Ratio Distribution in the Resulting Spray,” JPL Prog. Rep.20-195, 1956.
    27. Riebling, R. W., “Effect of Orifice Length-to- Diameter Ratio on Mixing in The Spray From a Pair of Unlike Impinging Jets,” Journal of Spacecraft, vol. 7, No. 7, 1970, pp. 894-896.
    28. Ashgriz, N., Brocklehurst, W., and Talley, D. G., “On the Mixing Mechanisms in a Pair of Impinging Jets,” AIAA 95-2421, 31st AIAA/ ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, San Diego, CA, July 10-12, 1995.
    29. Ashgriz, N., Brocklehurst, W., and Talley, D. G., “Mixing Mechanisms in a Pair of Impinging Jets,” Journal of Propulsion and Power, vol. 17, No. 3, May-June, 2001.
    30. Won Y. D., Cho Y. H., Lee S. W., Yoon W. S., “Effect of Momentum Ratio on the Mixing Performance of Unlike Split Triplet Injectors,” Journal of Propulsion and Power, vol. 18, No. 4, 2002.
    31. Lee, C. H., Jung, Y. H., and Chung, S. H., “An Experiment on Flow Distribution and Mixing in Impinging Jet Sprays,” Atomization and Spray, vol. 9, 1999, pp. 193-213.
    32. 袁曉峰, 陳威丞, 葉俊良, 田智元, 陳大明, “異質噴流衝擊霧化之觀察,” 中華民國第二十五屆全國力學會議, 台中市, 民國90年12月15-16日, pp. 73-84.
    33. 王修哲, “同質與異質衝擊式注油器霧化特性研究,” 國立成功大學碩士論文, 2002.
    34. 黃文榮, “同質衝擊噴流特性之研究,” 國立成功大學博士論文, 1998.
    35. Lichtarowicz, A., Duggins, R. K., and Markland, E., “Discharge Coefficient for Imcompressible Non-Cavitating Flow Through Long Orifices,” Journal of Mechanical Engineering Science, vol. 7, No.2, 1965, pp. 210-219.
    36. 黃祖宏, “液體物理性質對衝擊式注油器霧化特性之研究,” 國立成功大學碩士論文, 1998

    下載圖示 校內:2004-07-30公開
    校外:2004-07-30公開
    QR CODE