| 研究生: |
汪錫恩 Wang, Zion |
|---|---|
| 論文名稱: |
建立我國機場跑道長度影響航機起降安全之相對風險比較研究 A Study of Relative Risk Comparison on Runway Length of Major Airports in Taiwan Influencing the Flight Safety during Take-off and Landing Phases |
| 指導教授: |
黃國平
Hwang, Kevin P. (Kuo-Ping) |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 178 |
| 中文關鍵詞: | 敏感度分析 、邏輯式回歸 、風險管理 、機場安全 、衝出跑道 |
| 外文關鍵詞: | Sensitivity Analysis, Logistic Regression, Risk Management, Airport Safety, Runway Overrun |
| 相關次數: | 點閱:92 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
起降衝、偏出跑道的失事類型,一直以來都是航機於起降階段的主要事故原因。在我國飛安委員會所統計1997-2006年之29件飛航事故資料當中,衝偏出跑道便佔了8件之多,為所有事故類型中之最多件數者。
ICAO為提升整體飛航安全,透過系統安全之觀念,逐步從預防航空人員人為疏失、航空器機件故障及程序改善等,擴大到包含機場安全及飛航服務。隨著飛航安全與風險管理觀念上的演進,如何將風險控制在可接受的範圍,成了安全的實質意義;因風險為「損害發生之可能性」,同時涉及事故之發生機率、曝險程度及發生後之損害性;因此理想的風險管理,在於依事件的輕重緩急,排定事件的次序,優先處理損失較大與發生機率較高之事件。
各國民航主管機關囿於預算或財源,若過於注重個別機場的發展,將造成區域或國家整體發展的失衡,機場使用效益不彰等問題,因此越發重視攸關整體區域或國家發展的「機場系統計畫」。故而機場在增設、擴建或維護相關安全之設施時,在不同機場間作適宜之風險評估,以使資金及成本能作有效運用,便成了一值得深究的議題。特別是空側設施的跑道長度及機場安全區的設置,將直接影響航機起降安全、機場可使用機型及容量等,從ICAO近年修訂的標準及建議措施,將原本建議90m長的跑道端安全區改列為標準,並且增加所建議之跑道端安全區至Code3、4的240m,及Code 1、2的120m,可見一斑。
本研究在分析各機場跑道長度相對風險,是以各機場95年度各機型起降風險總和為指標,當中各機型之風險值為風險發生機率(Probability)、風險曝險度(Exposure)及風險損害性(Severity)之乘積。
在風險發生機率方面,本研究於國內初次藉由一英國學者Kirkland所建構之跑道剩餘長度(Excess Distance)影響落地衝出跑道之邏輯式迴歸模型(Logistic Regression Model),並綜合FAA所支持計畫中Wong建構之起降衝出跑道邏輯式迴歸模型,分析跑道可用長度(Distance Available)與航機起降之跑道需用長度(Distance Required)對航機衝出跑道之機率的影響。本研究所使用之綜合模型之係數受衝出跑道總體事故機率、機型大小及用途、平均側風、是否為國際線、樞紐機場等因素影響,本研究依據我國衝出跑道事故機率、機型及機場因素將其係數移轉並予以在地化(Localization);跑道可用長度受各類型公告距離及跑道端安全區(RESA)之影響;跑道需用長度受機型、發動機、航機重量、機場氣溫、機場海拔、跑道縱坡度、跑道場面風、跑道濕滑情形等因素影響,由於取得微觀(Micro)上包含事故及非事故每架個別航機上述因素之即時情況實屬困難,亦是本研究之限制所在,故本研究只得以各機型及機場為群組之上述因素,以宏觀(Macro)之結果作為其分析基礎。
在風險曝險度方面,本研究以各機場各機型之起降架次作為曝險度之依據,並依跑道各積水情況之時間比例再細分各積水情況之曝險度;在風險損害性方面,本研究將衝出跑道事故損害各個項目,包含航機損壞、人員傷亡、行李貨物損害賠償、燃油損失等,依航機國際市場交易價格、航機事故全毀及實質損傷率、航機起降階段事故人員傷亡率、人員傷亡及行李貨物賠償之國際慣例及國內法規、燃油價格等,同步化整為起飛及落地衝出跑道事故新台幣損失總金額。
在以95年度資料分析各機場之風險後,本研究並以增減主要相關因素,包括預估5年後使用機型與起降架次變動、承載率變動、機場溫度變化、跑道縱坡度調整、機場平均逆風改變、跑道兩端起降頻率變化、跑道積水時數變化、邏輯式回歸跑道剩餘長百分比之係數n變動、邏輯式回歸截距值m變動等,進行資料敏感度分析。
Runway overrun and excursion have always been the major causes of aircraft accidents during landing and take-off phases. According to the statistics of ASC, these types of accidents shared 8 out of 29 domestic accidents during 1997-2006, the highest number among all types of accidents.
In order to improve the worldwide flight safety, ICAO emphasizes not only on preventing human errors and system failures but also on improving the safety of airports and air traffic services, which enlarge the conception of system safety from human, software, and hardware factors to environmental factors. Along with the evolution of concepts in flight safety and risk management, how to control risk within an acceptable level turns out to be quite significant in the idea of safety. The meaning of risk refers to “the likelihood of severity,” involving with the probability, exposure, and severity of events. Therefore, the ideal risk management lies on ordering the priority of events according to their exposure, severity and probability.
However, because of the limitation of budget or financial resources, the authorities of civil aviation can’t focus on the development of “each” airport which results in imbalanced development of overall region or nation and inefficient utility of airports, thus “the plan of airport system,” related to the regional or national development, being much emphasized. In other words, different airports should undertake adequate risk assessment while increasing, expanding or maintaining facilities related to safety so that the capital and cost can be utilized efficiently, especially in the runway length and airport safety area in airside facilities, which will directly influence the flight safety during landing and take-off.
The analyses of relative risk on runway length of major airports in Taiwan are according to the sum value of product of landing and take-off risk probability, exposure, and severity of different aircraft types of each airport in the year of 2006.
In the aspect of risk probability, this research coordinates both Kirkland’s logistic regression model of landing overrun affected by the runway excess distance and Wong’s logistic regression model of takeoff/landing overrun sponsored by FAA in order to analyze aircraft overrun probability influenced by the runway distance available and runway distance required.
The coefficients of the models are influenced by the rate of overall overrun accidents, the size and usage of different aircraft types, the average crosswind etc., and are transferred and localized according to the probability of overrun accidents occurred in Taiwan, aircraft types and airports.
The runway distance available is affected by the different types of announced runway distance and runway end safety area (RESA);
The runway distance required is affected by the types of aircrafts and engines, aircraft weights, the temperatures, elevations and headwinds of airports, the slopes and wet conditions of runway etc. Due to the difficulties of collecting the updated and micro data of all above-mentioned factors including accident and non-accident aircrafts, this research analyzes the risks of airports by the macro statistics or representative data.
In the aspect of risk exposure, this research takes the numbers of departures and arrivals of each type of aircraft in each airport as its basis, and classifies the exposure by the time proportion of different slippery runway conditions.
In the aspect of risk severity, this research converts the factors influencing severity of runway overrun as the sum of risk cost, such as the damage of aircraft, causalities of passengers and personnel, indemnification for baggage and cargos, and the loss of fuel etc., according to the average prices of aircrafts in international markets, the rates of hull-loss and substantial, the rates of fatalities and injuries, the indemnification regulated in international conventions and domestic regulations, and the price of fuel etc.
[1] ACI, “2006 World Airport Traffic Report”, Airport Council International, 2007.
[2] ACI, “Airports welcome record 4.4 billion passengers in 2006”, Airport Council International, 2007/07/18.
[3] ACI, “Global Traffic Forecast 2006-2025”, ACI Traffic Forecast Advisory Service, 2007.
[4] Ale, B.J.M., Piers, M., “The assessment and management of third party risk around a major airport”, Journal of Hazardous Materials, vol.7, 2000, Jan ., p.1-16.
[5] Air Disaster http://airdisaster.com.
[6] Aircraft Value Analysis Company, “Aircraft Value News - Semi-Annual Jet Aircraft Value Listing 2008-01”, 2008/01/07.
[7] Aircraft Value Analysis Company, “Aircraft Value News - Turboprop Values Exhibit Stability 2008-05”, 2008/05/12.
[8] Appleyard A., Wong D., Pitfield D.E., Caves R.E., “The Development Of A New Methodology For Airport Risk Assessment”, the 9th Annual World Conference of the Air Transport Research Society, 2005, Jul., Rio de Janeiro, Brazil.
[9] Ashford, R., “Approach and Landing Fatal Accidents 1980–1996”, Safety Analysis Report No. SA-98-002. Civil Aviation Authority, 1998, London.
[10] ASN, Aviation Safety Network, http://aviation-safety.net.
[11] Aviation Today, http://www.aviationtoday.com.
[12] Barnett, 1994.
[13] Boeing, “Statistical Summary of Comercial Jet Airplane Accidents Worldwide Operations 1996-2005”, 2006, May.
[14] Boeing, “Statistical Summary of Comercial Jet Airplane Accidents Worldwide Operations 1997-2006”, 2007, Jul.
[15] Critical Path, INC, 2005.
[16] Enders, J., Doff, R., Tarrel, R., Khatwa, R., Roelen, Al., Karwal, A., “Airport safety: A study of accidents and available approach-and-landing aids”, Flight Safety Digest, 1996, Mar., Flight Safety Foundation, Alexandria.
[17] Evans, A.W., “Third party risk near airports and public safety zone policy”, R&D report 9636, National Air Traffic Services, 1997, London.
[18] FAA, ”FAA Aviation Forecasts for 2006-2017”, Federal Aviation Administration, 2006, Washington DC.
[19] Fiorino, F., “Safety in numbers”, Aviation Week & Space Technology, 2005 Aug., p.22-29.
[20] FSF, “Approach and Landing Accident Reduction, ALAR Briefing Note 8.1 – Runway Excursions and Runway Overruns”, Flight Safety Diest, 2000, Aug.-Nov., p.159-162.
[21] FSF, “Approach and Landing Accident Reduction, ALAR Briefing Note 8.5 – Wet and Contaminated Runway”, Flight Safety Diest, 2000, Aug.-Nov., p.179-184.
[22] Geoffrey R. McIntyre*, “The application of system safety engineering and management techniques at the US Federal Aviation Administration (FAA)”, Safety Science vol.40, 2002, p.325–335.
[23] Hale, A., “Risk contours and risk management criteria for safety at major airports, with particular reference to the case of Schiphol”, Safety Science. vol.40, 2002, p.299-323.
[24] Harro Ranter, Jan., “Airline Accident Statistics 2005”, Aviation Safety Network, 2006, p.12.
[25] Hillestad, R., Solomon, K., Stoop, J.A., Chow, B., Kahan, J., “Airport Growth and Safety—A study of the external risks of Schiphol airport and possible safety enhancement measures”, EAC-RAND. Report No. MR-228-EAC/VW, 1993, Santa Monica, CA.
[26] Horonjeff & McKelvey, “Planning & Design of Airports”, 1994, 4th edit.
[27] IATA, Internationl Air Transport Association, http://www.iata.org.
[28] IATA, “IATA Passenger and Freight Forecast 2005-2009”, International Air Transport Association, 2005, Montreal.
[29] ICAO, “Aerodrome Design Manual”, ICAO Doc 9157 AN/901, Part1-5, 1984-2005.
[30] ICAO, “Annual Review of Civil Aviation 2005”, ICAO Journal, vol.61, no.5, 2006, Oct.
[31] ICAO, “ICAO Annex 14 Volume1 Aerodrome Design and Operation”, 2004, 4th edit.
[32] ICAO, “Manual on Certification of Aerodrmes”, ICAO Doc 9774 AN/969, 2001, 1st edit.
[33] ICAO, “Safety Management Manual, SMM”, ICAO Doc 9859 AN/460, 2006, 1st edit.
[34] ICAO, “The Effect of Variable Runway Slopes on Takeoff Runway Length for Transport Aeroplanes”, ICAO Circular 91-AN/75, 1970, Montrel, Canada.
[35] Jowett, J., Cowell, C.J., “A study into the distribution of near airfield accidents (for fixed wing aircraft of mass greater than 2.3Te)”, Report No. AEA RS 5168, AEA Reactor Services, Safety and Performance Division, Atomic Energy Authority, 1991, United Kingdom.
[36] Khatwa, R., Helmreich, R.L., “Analysis of critical factors during approach and landing in accidents and normal flight”, Flight Safety Digest, Flight Safety Foundation, 1999, Alexandria.
[37] Kirkland, I.D.L., “The risk assessment of aircraft runway overrun accidents and incidents”, Phd thesis, Dept. Civil & Building Egn., Loughborough University, 2001.
[38] Kirkland, I.D.L., Caves, R.E., “A New Aircraft Overrun Database”, Paper Number 02-2966 to US Transportation Research Board at the 80th Annual Meeting, 2002, Washington.
[39] Kirkland, I.D.L., “The normalisation of aircraft overrun accident data”, Journal of Air Transport Management vol.9, 2003, p.333-341.
[40] Kirkland I.D.L., Caves R.E., Humphreys I.M., Pitfield D.E., “An improved methodology for assessing risk in aircraft operations at airports, applied to runway overruns”, Safety Science, vol.42, 2004, p.891-905.
[41] Lee, W., “Risk assessment modeling in aviation safety management”, Journal of Air Transport Management, vol.12, 2006, p.267-273
[42] Muir, H. & Thomas, L., “Passenger safety and very large transportation aircraft”, Aircraft Engineering and Aerospace Technology, vol. 76, no. 5, 2004, p.479-786.
[43] NTSB, Aviation Accidents Statistics, http://www.ntsb.gov/aviation/Stats.htm.
[44] Paul Carson, Angelo Buccanfuso, “Aircraft Landing Operations On Wet Runways”, R & D Gazette, vol. 1, 2006, Transport Cananda.
[45] Peter Gerber, “Success factors for the privatisation of airports—an airline perspective”, Journal of Air Transport Management, vol.8, no.1, 2002, Jan., p.29-36.
[46] Roland, H. E., Moriarty, B., System Safety Engineering and Management. John Wiley, 1990, New York.
[47] Roelen, A., Wever, R., Hale, A., Goossens, L., Cooke, R., Lopuhaa, R., Simons, M.,Valk, P., “Causal modelling using Bayesian belief nets for integrated safety at airports”, Risk Decision and Policy. vol. 9, no. 3, 2004, p.207-222.
[48] Sally B. Donnelly, “Is the Runway Part of the Problem?”, Times, 2006/08/28.
[49] Simmons, J., “Forrest, J., “United States aviation safety data: uses and issues related to sanctions and confidentiality”, Journal of Air Law and Commerce. vol.70, pt.1, 2005, p.83-114.
[50] W.B. Horne and U.T. Joyner, “Pneumatic Tire Hydroplaning and Some Effects on Vehicle Performance”, Proceedings of the Society of Automotive Engineers, Paper No. 97UC, New York, 1965.
[51] Wikipedia,http://en.wikipedia.org
[52] Wong D.K.Y., Pitfield D.E., Appleyard A.J., Caves R.E., “An Approach to Airport Risk Assessment Using Normal Operations Data with Bootstrapped Logistic Regression”, the 44th Western Regional Science Annual Meeting, 2005, Feb., 23-26, San Diego, CA, USA
[53] Wong D.K.Y., Pitfield D.E., Caves R.E., Appleyard A.J., “Quantifying and characterizing aviation accident risk factors”, Journal of Air Transport Management, vol.12, 2006, p.352-357.
[54] Wong D.Y., Pitfield D.E., Caves R.E., Appleyard A.J., “The Development of Aircraft Accident Frequency Models”, Safety and Reliability for Managing Risk, Taylor and Francis, 2006, London
[55] Wong, K.Y. “The Modelling of Accident Frequency Using Risk Exposure Data for the Assessment of Airport Safety Areas”, Phd thesis, Dept. Civil & Building Egn., Loughborough University, 2007.
[56] 上海機場集團有限公司,2008/03/13
[57] 中國民航訊息網,“巴西客機失事存在五大可能原因”,2007/07/19, http://www.airnews.cn
[58] 北京首都國際機場股份有限公司,2008/02/29
[59] 百度百科,http://baike.baidu.com
[60] 行政院飛航安全委員會,”民用航空器及公務航空器飛航事故調查作業處理規則”,飛安字第0930012022號令,2004年12月21日
[61] 行政院飛航安全委員會ASC,”台灣飛安統計1997-2006”,2007年
[62] 行政院飛航安全委員會ASC,“航空器失事調查報告ASC-AAR-02-04-002”,2002年4月
[63] 行政院消費者保護委員會,”國內線航空乘客運送定型化契約範本”, 2007年9月27日第150次委員會議討論修正通過
[64] 交通部,“民用航空法部分條文修正草案“,2006年
[65] 交通部中央氣象局http://www.cwb.gov.tw
[66] 交通部民用航空局http://www.caa.gov.tw
[67] 交通部民航局,”台北飛航情報區飛航服務指南”,2008/04/10
[68] 交通部民航局,”各機場數值地形測量暨禁限建範圍障礙物測量作業”,2003年12月
[69] 交通部民用航空局,“航空運輸專論—第7章 飛航安全系統分析”
[70] 交通部民用航空局,“航空運輸專論—第13章 機場規劃設計”
[71] 交通部民用航空局,“航空運輸專論—第14章 民用機場空側設施暨作業”
[72] 交通部民用航空局,“民用機場設計暨運作規範”,交通技術標準規範空運類場站建設部,2006年5月,第二版
[73] 交通部民航局飛航服務總臺http://www.anws.gov.tw
[74] 交通部民航局航站管理小組,“機場認證—過去、現在與未來”, 2006年
[75] 江逸之,”全球飆機場”,遠見雜誌 第257期,2007年11月
[76] 呂明穎,“機場認證之研究—以中正機場標線維護為例”,國立交通大學交通運輸研究所,2004年1月
[77] 但昭璧,2005年12月,“機場標準化”,2005中國航太學會/中華民航學會聯合學術研討會,高雄
[78] 林瑞珠,”國際油價上漲,飛航行李減重”,Dynasty,2008年5月,p.14
[79] 香港國際機場2007/08年報
[80] 高宏峰,”中國民用航空發展第十一個五年規劃”,中國民航總局,2005年
[81] 凌鳳儀,”航空運輸總論”,文生書局,1998年9月
[82] 陳承先,”國際航空運送人之責任”,國立臺灣海洋大學海洋法律研究所碩士論文,2000年
[83] 國際貨幣基金, IMF, International Monetary Fund, http://www.imf.org
[84] 張有恆,2001年3月,”航空公司經營管理對飛航安全水準之影響”,民航季刊 第3卷第1期,p.81-106
[85] 新加坡樟宜機場http://www.changiairport.com
[86] 楊宏智,“應用飛航參數估算航機於濕滑跑道落地之摩擦係數”,ASC 研究計畫,2007年10月
[87] 維基百科,http://zh.wikipedia.org
[88] 臺灣環境資訊中心,”日預估本世紀末地球增溫高達4.7度”,,2007年1月9日中央社
[89] 盧衍良、劉震苑、王興中,“我國衝/偏出跑道飛航事故因素研究”,2006民航學會與國籍航空飛安年會聯合年會, 2006年12月,台北