| 研究生: |
黃子玲 Huang, Tzu-ling |
|---|---|
| 論文名稱: |
改善外用皮質類固醇製劑副作用的處方開發研究 Formulation development to improve safety of topical corticosteroid therapy |
| 指導教授: |
蔡瑞真
Tsai, Jui-chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床藥學研究所 Institute of Clinical Pharmacy |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 植物油 、clobetasol propionate 、酸鹼值 、外用皮質類固醇 、皮膚障壁功能恆定 |
| 外文關鍵詞: | clobetasol propionate, vegetable oil, skin barrier homeostasis, Topical Corticosteroids, pH |
| 相關次數: | 點閱:139 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
皮質類固醇類藥品對於發炎性皮膚疾病是相當有效的治療,然而長期使用皮質類固醇類藥品可能導致局部副作用,而其中以皮膚萎縮為最常見的副作用。研究顯示皮質類固醇類藥品會抑制皮膚角質層脂肪的生合成和減少角質細胞橋小體的數目,而影響皮膚障壁的恆定和角質層的完整性。目前臨床上皮膚科醫師多建議在使用外用皮質類固醇療法時並用保濕劑來緩解局部的副作用。在開發中國家植物油常被用來按摩新生兒以改善其皮膚障壁功能,而動物研究顯示高linoleic acid 含量的植物油,如葵花油,對皮膚障壁有最大的好處,不僅由於linoleic acid 是體內的必須脂肪酸,也是相當強的PPARα activator,可刺激使角質功能成熟的酵素β-Glucocerebrosidase活化,使得角質層及顆粒層的層狀結構完整,進而促進胚胎鼠表皮障壁的形成。
另外,當皮膚角質層酸化的過程遭到破壞時,皮膚表面pH值會變得較中性,皮膚障壁功能逐漸異常。研究顯示將遭到破壞的皮膚暴露在酸性的pH值(5.5)下,可以達到正常障壁功能的回復;反之,在中性或鹼性pH值(7.4)下,則會延緩障壁功能的回復。
本研究之目的在應用調節與修復皮膚障壁功能恆定之方法,開發以植物油為油相之外用皮質類固醇乳劑。選用的藥品為超強效價的clobetasol propionate (CP),首先製備不同種類及不同比例之植物油乳劑,並分別配製成pH5.5、pH7.4,及不同比例CP含量之乳劑,篩選其CP穿皮速率與市售品Dermovate®乳膏相近者,進行人體試驗確認其血管收縮反應與市售品Dermovate®相近,且藉由皮膚障壁功能恆定試驗與市售品Dermovate®作比較,評估處方製劑對皮膚障壁功能恆定之影響。開發之處方製劑期望能造福皮膚疾病患者,避免因長期使用外用皮質類固醇製劑引起之局部不良反應。
研究結果顯示,以植物油為油相之外用CP乳劑之穿皮速率與血管收縮反應無相關性。隨著製劑中油相比例的減少,血管收縮反應亦無顯著上升之現象。中性之處方製劑,相對於較低pH值之處方製劑並未造成皮膚障壁功能恆定之惡化。此外,內含30 % 葵花油,10 % propylene glycol,乳化劑glycerol monostearate及polyethylene glycol monostearate分別為10.5 % 及4.5 %之pH 5.5處方製劑不僅在藥效上與Dermovate®相當,並有助於皮膚障壁功能之恆定。故未來可針對此處方組成,進一步加以改善,降低因長期使用外用皮質類固醇製劑引起之局部不良反應。
Glucocortiocoids(GCs) are highly effective for the topical treatment of inflammatory skin diseases. Their long-term use, however, is often accomparied by severe and partially irreversible adverse effects, with skin atrophy being the most prominent limitation, where a major function of the skin, the formation of a permeability barrier is compromised. Studies have demonstrated that topical GC therapy display adverse effects on permeability barrier homeostasis and stratum corneum integrity and cohesion, attributable to a profound global inhibition of lipid synthesis and a diminution the density of corneodesmosomes in the lower stratum corneum. Vegetable oils have been applied topically to enhance epidermal barrier function in neonates.
In mouse skin acutely disrupted by tape-stripping, it appears that vegetable oils with high linoleic acid content, for example, the sunflower seed oil, provide the most potential benefit to the skin barrier. Recently, the essential fatty acid-linoleic acid has been shown to be one of the most potent activators of PPARα, and its application to fetal rat skin explants at physiologic concentrations increased the activity of β-Glucocerebrosidase and improved SC integrity, which was correlated with an increase in corneodesmosome density and desmoglein-1 content, and then accelerated epidermal barrier development. The skin surface pH value will be elevated through disrupting the mechanisms of stratum corneum acidification, which result in abnormal skin barrier function. Exposure of intact murine stratum corneum to a neutral pH produced abnormalities in stratum corneum integrity and cohesion.
The objectives of the studies were to apply the strategies to modulate and improve skin barrier homeostasis, to develop topical GC formulations based on different kinds of vegetable oils at different pH value. The super-potent clobetasol propionate (CP) was selected as drug candidate. The vegetable oil creams containing 0.05-0.1 % CP were prepared and their drug delivery through skin was compared with Dermovate cream. Studies on healthy human volunteers were conducted to verify the vasoconstriction responses of formulations and the influences on skin barrier homeostasis. The studies were aimed to develope formulations which would prevent the long-term GC therapy-induced skin atrophy in diseased-skin patients.
The results demonstrated that there was no correlation between the in vitro skin flux and the in vivo vasoconstriction responses of the prepared formulations. The vasoconstriction responses have not been enhanced as the oil content of formulation was decreased. In comparison with formulations at acidic pH, there was no apparent deterioration on skin barrier homeostasis following application of formulations at neutral pH. The formulation based on 30 % sunflower oil, 10.5 % glycerol monostearate, 4.5 % polyethylene glycol monostearate and 10 % propylene glycol, adjusted at pH 5.5, demonstrated some improvement in skin barrier homeostasis. Further investigation will be needed to develop effective and safe formulations.
1. Stoughton RB, C.R., Corticosteroids, in Dermatology in General Medicine, A.E. TB Fitzpatrick, K Wolff, IM Freedberg, and KF Austen, Editor. 1993, MacGraw-Hill, New York. p. v2,2846-2850.
2. Gilman AG, R.T., Nies AS, et alGilman AG, Rall TW, Nies AS, in Goodman and Gilman's The Pharmacological Basis of Therapeutics. 1990, Pergamon Press, New York, NY.
3. Schimmer BP, P.K., Adrenocoritotropic hormone: adrenocortical steroids and their synthetic analogs; inhibitors of adrenocortical steroid biosynthesis., in Goodman and Gilman’s The Pharmacological Basis of Therapeutics, L.L. Hareman JG, Molinoff PB, Ruddon RW, Gilman AG, Editor. 1996, McGraw-Hill, New york. p. 1459-1485.
4. Pachorek, R.E., Adrenal Hormones. 2000, McGraw-Hill, USA.
5. Guzzo CA, L.G., Werth VP, Dermatological pharmacology., in Godman and Gilman’s The Pharmacological Basis of therapeutics, L.L. Hardman JG, Molinoff PB, Ruddon RW, Gilman AG, Editor. 1996, McGraw-Hill, New York. p. 1593-1616.
6. Schoepe, S., et al., Glucocorticoid therapy-induced skin atrophy. Experimental Dermatology, 2006. 15(6): p. 406-20.
7. Kao, J.S., et al., Short-term glucocorticoid treatment compromises both permeability barrier homeostasis and stratum corneum integrity: inhibition of epidermal lipid synthesis accounts for functional abnormalities. Journal of Investigative Dermatology, 2003. 120(3): p. 456-64.
8. Sheu, H.M., et al., Depletion of stratum corneum intercellular lipid lamellae and barrier function abnormalities after long-term topical corticosteroids. British Journal of Dermatology, 1997. 136(6): p. 884-90.
9. Hanley, K., et al., Fetal epidermal differentiation and barrier development In vivo is accelerated by nuclear hormone receptor activators. Journal of Investigative Dermatology, 1999. 113(5): p. 788-95.
10. Schmitz, G. and G. Muller, Structure and function of lamellar bodies, lipid-protein complexes involved in storage and secretion of cellular lipids. Journal of Lipid Research, 1991. 32(10): p. 1539-70.
11. Bouwstra, J.A., et al., The skin barrier in healthy and diseased state. Biochimica et Biophysica Acta, 2006. 1758(12): p. 2080-95.
12. Norlen, L., Skin barrier formation: the membrane folding model. Journal of Investigative Dermatology, 2001. 117(4): p. 823-9.
13. SY, H., et al., - Membrane structures in normal and essential fatty acid-deficient stratum corneum. - J Invest Dermatol. 1991 Feb;96(2):215-23., (- 0022-202X (Print)): p. - 215-23.
14. Uchida, Y., et al., Epidermal sphingomyelins are precursors for selected stratum corneum ceramides. Journal of Lipid Research, 2000. 41(12): p. 2071-82.
15. WM, H., et al., - Consequences of beta-glucocerebrosidase deficiency in epidermis. Ultrastructure. - J Clin Invest. 1994 Apr;93(4):1756-64. Inositol Glucosylceramidase AR-19098/AR/NIAMS NIH HHS/United States AR-39448/AR/NIAMS NIH HHS/United States, (- 0021-9738 (Print)): p. - 1756-64.
16. Rogers, J., et al., Stratum corneum lipids: the effect of ageing and the seasons. Archives of Dermatological Research, 1996. 288(12): p. 765-70.
17. Madison, K.C. and K.C. Madison, Barrier function of the skin: "la raison d'etre" of the epidermis. Journal of Investigative Dermatology, 2003. 121(2): p. 231-41.
18. Ghadially, R., et al., The aged epidermal permeability barrier. Structural, functional, and lipid biochemical abnormalities in humans and a senescent murine model. Journal of Clinical Investigation, 1995. 95(5): p. 2281-90.
19. KA., G., Transpeidermal water loss in pathologic skin, in The Physiology and Pathophysiology of the Skin, J. A., Editor. 1980, London: Academic Press.
20. Denda, M., et al., Immobilization-induced and crowded environment-induced stress delay barrier recovery in murine skin. British Journal of Dermatology, 1998. 138(5): p. 780-5.
21. Cravello, B., et al., Relationships between skin properties and environmental parameters. Skin Research & Technology, 2008. 14(2): p. 180-6.
22. Denda, M. and T. Tsuchiya, Barrier recovery rate varies time-dependently in human skin. British Journal of Dermatology, 2000. 142(5): p. 881-4.
23. Grubauer, G., P.M. Elias, and K.R. Feingold, Transepidermal water loss: the signal for recovery of barrier structure and function. Journal of Lipid Research, 1989. 30(3): p. 323-33.
24. Denda, M. and M. Denda, New strategies to improve skin barrier homeostasis. Advanced Drug Delivery Reviews, 2002. 54 Suppl 1: p. S123-30.
25. Man, M.Q., K.R. Feingold, and P.M. Elias, Exogenous lipids influence permeability barrier recovery in acetone-treated murine skin. Archives of Dermatology, 1993. 129(6): p. 728-38.
26. Elias PM, M.M.-Q., Thornfeldt CR, Feingold KR., The epidermal permeability barrier: effects of physiologic and non-physiologic lipids., in The lanolin book., Hoppe U, Editor. 1999, Beiersdorf AG, Hamburg, Germany. p. 253-279.
27. Ghadially, R., L. Halkier-Sorensen, and P.M. Elias, Effects of petrolatum on stratum corneum structure and function. Journal of the American Academy of Dermatology, 1992. 26(3 Pt 2): p. 387-96.
28. Feingold, K.R., Role of nuclear hormone receptors in regulating epidermal differentiation, in Program and Preprints of Annual Scientific Seminar, Society of Cosmetic Chemists. 1999. p. 30-31.
29. Fluhr, J.W., et al., Topical peroxisome proliferator activated receptor activators accelerate postnatal stratum corneum acidification. Journal of Investigative Dermatology, 2009. 129(2): p. 365-74.
30. Mauro, T., et al., Barrier recovery is impeded at neutral pH, independent of ionic effects: implications for extracellular lipid processing.[erratum appears in Arch Dermatol Res 1998 Jul;290(7):405]. Archives of Dermatological Research, 1998. 290(4): p. 215-22.
31. Zlotogorski, A., Distribution of skin surface pH on the forehead and cheek of adults. Archives of Dermatological Research, 1987. 279(6): p. 398-401.
32. Fluhr, J.W., et al., Generation of free fatty acids from phospholipids regulates stratum corneum acidification and integrity.[see comment]. Journal of Investigative Dermatology, 2001. 117(1): p. 44-51.
33. Kim, M.K., et al., Evaluation of gender difference in skin type and pH. Journal of Dermatological Science, 2006. 41(2): p. 153-6.
34. Chikakane, K. and H. Takahashi, Measurement of skin pH and its significance in cutaneous diseases. Clinics in Dermatology, 1995. 13(4): p. 299-306.
35. Itoh, S. and T. Nakayama, Ammonia in human sweat and its origin. Japanese Journal of Physiology, 1953. 3(2): p. 133-7.
36. Krien, P.M. and M. Kermici, Evidence for the existence of a self-regulated enzymatic process within the human stratum corneum -an unexpected role for urocanic acid. Journal of Investigative Dermatology, 2000. 115(3): p. 414-20.
37. Behne, M.J., et al., NHE1 regulates the stratum corneum permeability barrier homeostasis. Microenvironment acidification assessed with fluorescence lifetime imaging. Journal of Biological Chemistry, 2002. 277(49): p. 47399-406.
38. Ekholm, I.E., M. Brattsand, and T. Egelrud, Stratum corneum tryptic enzyme in normal epidermis: a missing link in the desquamation process? Journal of Investigative Dermatology, 2000. 114(1): p. 56-63.
39. Hachem, J.P., et al., pH directly regulates epidermal permeability barrier homeostasis, and stratum corneum integrity/cohesion. Journal of Investigative Dermatology, 2003. 121(2): p. 345-53.
40. Vaccaro, A.M., M. Muscillo, and K. Suzuki, Characterization of human glucosylsphingosine glucosyl hydrolase and comparison with glucosylceramidase. European Journal of Biochemistry, 1985. 146(2): p. 315-21.
41. Schmuth, M., et al., Permeability barrier disorder in Niemann-Pick disease: sphingomyelin-ceramide processing required for normal barrier homeostasis. Journal of Investigative Dermatology, 2000. 115(3): p. 459-66.
42. J. BEARE-ROGERS, A.D., J. V. HOLM, LEXICON OF LIPID NUTRITION. Pure Appl. Chem., 2001. Vol. 73, No. 4: p. 685-744.
43. Darmstadt, G.L., et al., Impact of topical oils on the skin barrier: possible implications for neonatal health in developing countries. Acta Paediatrica, 2002. 91(5): p. 546-54.
44. Darmstadt, G.L., et al., Topically applied sunflower seed oil prevents invasive bacterial infections in preterm infants in Egypt: a randomized, controlled clinical trial. Pediatric Infectious Disease Journal, 2004. 23(8): p. 719-25.
45. Darmstadt, G.L., et al., Effect of topical treatment with skin barrier-enhancing emollients on nosocomial infections in preterm infants in Bangladesh: a randomised controlled trial. Lancet, 2005. 365(9464): p. 1039-45.
46. Hanley, K., et al., Activators of the nuclear hormone receptors PPARalpha and FXR accelerate the development of the fetal epidermal permeability barrier. Journal of Clinical Investigation, 1997. 100(3): p. 705-12.
47. Krueger, J.G., et al., Role of growth factors, cytokines, and their receptors in the pathogenesis of psoriasis. Journal of Investigative Dermatology, 1990. 94(6 Suppl): p. 135S-140S.
48. Imokawa, G., et al., Pseudo-acylceramide with linoleic acid produces selective recovery of diminished cutaneous barrier function in essential fatty acid-deficient rats and has an inhibitory effect on epidermal hyperplasia. Journal of Clinical Investigation, 1994. 94(1): p. 89-96.
49. Blanken, R., et al., Effect of mineral oil and linoleic-acid-containing emulsions on the skin vapour loss of sodium-lauryl-sulphate-induced irritant skin reactions. Contact Dermatitis, 1989. 20(2): p. 93-7.
50. Jiang, S.J., et al., Structural and functional effects of oleic acid and iontophoresis on hairless mouse stratum corneum. Journal of Investigative Dermatology, 2000. 114(1): p. 64-70.
51. Aarti Naika, Louk A. R. M. Pechtoldc, b, Russell O. Pottsb and Richard H. Guya, Mechanism of oleic acid-induced skin penetration enhancement in vivo in humans Journal of Controlled Release, 1995. 37(3): p. 299-306.
52. Solanki, K., et al., Transcutaneous absorption of topically massaged oil in neonates. Indian Pediatrics, 2005. 42(10): p. 998-1005.
53. Verallo-Rowell, V.M., et al., Novel antibacterial and emollient effects of coconut and virgin olive oils in adult atopic dermatitis. Dermatitis, 2008. 19(6): p. 308-15.
54. Carpo, B.G., et al., Novel antibacterial activity of monolaurin compared with conventional antibiotics against organisms from skin infections: an in vitro study. Journal of Drugs in Dermatology: JDD, 2007. 6(10): p. 991-8.
55. Thormar, H., et al., The role of microbicidal lipids in host defense against pathogens and their potential as therapeutic agents. Chemistry & Physics of Lipids, 2007. 150(1): p. 1-11.
56. FDA., Guidance for industry: topical dermatologic corticosteroids: in vivo bioequivalence., in Center for drug evaluation and research., R. MD, Editor. June 1995.
57. McKenzie AW, S.R., Method for comparing percutaneous absorption of steroids. Arch Dermatol., 1962. 89: p. 741-746.
58. B., J., CIE colorimetry., in Handbook of invasive methods and the skin., J.B. Jorgen S, Editor. 1994, Boca Raton. p. 385-397. .
59. Gorne, R.C., et al., Assessment of topical corticosteroid activity using the vasoconstriction assay in healthy volunteers. Skin Pharmacology & Physiology, 2007. 20(3): p. 133-40.
60. Cornell, R.C. and R.B. Stoughton, Correlation of the vasoconstriction assay and clinical activity in psoriasis. Archives of Dermatology, 1985. 121(1): p. 63-7.
61. Hardman JG, L.L., Molinoff PB, Ruddon RW, Gilman AG, in Goodman and Gilmean’s The Pharmacological Basis of Therapeutics. 1996, McGraw-Hill, New York. p. 1459-1485.
62. WW., F., Mechanisms of drug action., in General priniciples of pharmacology., S.R. Charles RC, Editor. 1994, Karen, Feeney. p. 9-18.
63. Stoughton, R.B. and K. Wullich, Relation of application time to bioactivity of a potent topical glucocorticoid formulation. Journal of the American Academy of Dermatology, 1990. 22(6 Pt 1): p. 1038-41.
64. Stoughton, R.B. and K. Wullich, The same glucocorticoid in brand-name products. Does increasing the concentration result in greater topical biologic activity? Archives of Dermatology, 1989. 125(11): p. 1509-11.
65. Otto, A., J. du Plessis, and J.W. Wiechers, Formulation effects of topical emulsions on transdermal and dermal delivery. International Journal of Cosmetic Science, 2009. 31(1): p. 1-19.
66. Wiren, K., et al., Enhancement of bioavailability by lowering of fat content in topical formulations. British Journal of Dermatology, 2009. 160(3): p. 552-6.
67. M., K., Design of topical drug products: Pharmaceutics, in Drug Design., A. EJ., Editor. 1973, New York, Academic Press,. p. 93-148.
68. Surber, C., et al., The mystical effects of dermatological vehicles. Dermatology, 2005. 210(2): p. 157-68.
69. Chiang C-M, F.G., Weiner ND, Szpunar GJ., Bioavailability assessment of topical delivery systems: Effect of vehicle evaporation upon in vitro delivery of minoxidil from solution formulations. Int J Pharm., 1989. 55: p. 229-236.
70. Davis AF, H.J., Effect of supersaturation on membrane transport: 1. Hydrocortisone acetate. Int J Pharm., 1991. 76: p. 1-8.
71. Harrison, J.E., et al., The relative effect of Azone and Transcutol on permeant diffusivity and solubility in human stratum corneum. Pharmaceutical Research, 1996. 13(4): p. 542-6.
72. Larrucea, E., et al., Combined effect of oleic acid and propylene glycol on the percutaneous penetration of tenoxicam and its retention in the skin. European Journal of Pharmaceutics & Biopharmaceutics, 2001. 52(2): p. 113-9.
73. Smith, E.W., E. Meyer, and J.M. Haigh, Blanching activities of betamethasone formulations. The effect of dosage form on topical drug availability. Arzneimittel-Forschung, 1990. 40(5): p. 618-21.
74. Lalor, C.B., G.L. Flynn, and N. Weiner, Formulation factors affecting release of drug from topical formulations. 1. Effect of emulsion type upon in vitro delivery of ethyl p-aminobenzoate. Journal of Pharmaceutical Sciences, 1994. 83(11): p. 1525-8.
75. Schafer-Korting, M., et al., Lipid nanoparticles for improved topical application of drugs for skin diseases. Advanced Drug Delivery Reviews, 2007. 59(6): p. 427-43.
76. Fang, J.Y., et al., Topical application of clobetasol 17-propionate from various cream bases by using Wistar rat as an animal model. Kaohsiung Journal of Medical Sciences, 1998. 14(5): p. 286-93.
77. Dreher, F., et al., Colorimetric method for quantifying human Stratum corneum removed by adhesive-tape stripping. Acta Dermato-Venereologica, 1998. 78(3): p. 186-9.
78. 蔡宜芳, 外用 0.05% Clobetasol 17-Propionate 之藥動藥效生體相等性研究 2001: 國立成功大學, 台南.
79. Ahn, S.K., et al., Effects of a multilamellar emulsion on glucocorticoid-induced epidermal atrophy and barrier impairment. Journal of Dermatology, 2006. 33(2): p. 80-90
校內:2108-07-29公開