| 研究生: |
黃昱哲 Huang, Yu-Zhe |
|---|---|
| 論文名稱: |
聚對二氧環己酮及聚對苯二甲酸辛二酯之週期層次結構之表面及內部三維晶板組裝分析 Top-surface and Interior Analyses on 3-D Crystal Assembly with Periodic Hierarchical Structures in Poly(p-dioxanone) and Poly(octamethylene terephthalate) |
| 指導教授: |
吳逸謨
Woo, Eamor M. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 聚對二氧環己酮 、聚對苯二甲酸辛二酯 、聚酯高分子 、晶板排列 、spiral 、週期層次結構 |
| 外文關鍵詞: | poly(octamethylene terephthalate), polyesters, lamellar assembly, spiral, periodic hierarchical structures |
| 相關次數: | 點閱:87 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究應用偏光顯微鏡(POM)、原子力顯微鏡(AFM)、電子顯微鏡(SEM)及微分掃描熱卡計(DSC)分別探討:生物可分解性聚酯類聚對二氧環己酮(PPDO)與聚丁二酸二乙酯(PESu)之混摻系統及聚對苯二甲酸辛二酯(POT),以熔融結晶的方式,形成之球晶形貌、上表面及內部晶板排列。
第一部分為PPDO/PESu混摻系統,首先以POM針對不同組成及結晶溫度進行球晶形貌初步的觀察,最後選擇PPDO/PESu (75/25)以及(50/50)的組成比例以p-dioxane蝕刻後做進一步的分析。PPDO/PESu (75/25)在固定結晶溫度(Tc) 75 oC下會形成三種不同球核形貌之球晶,分別是:double-spiral、single-spiral以及concentric rings,並推測其生長機制。接著利用AFM與SEM針對double-spiral球晶上表面及內部晶板排列進行一系列探討,表面觀察到晶板具有分枝以及與spiral方向一致的偏折行為。內部晶板同時存在與基材平行及垂直的兩種排列,連接表面與內部晶板之關聯性,建立三維晶板組裝分析,以提出合理完整地解釋週期層次結構。PPDO/PESu (50/50)組成中,結晶溫度不僅會影響表面晶板分枝情形與偏折的趨勢,對於valley的寬度同樣會有相當程度的作用。第二部分為POT系統,同樣結合AFM及SEM的結果觀察表面與斷截面之對應關係,提出可能的晶板生長機制以解釋週期層次結構。透過兩個系統的研究可以了解到內部週期層次結構由不連續的晶板排列建構而成,並非傳統觀念的連續性晶板扭轉所組成。
Morphologies and top-surface and interior lamellar arrangement of biodegradable polyesters, poly(p-dioxanone) (PPDO) blended with poly(ethylene succinate) (PESu) as well as poly(octamethylene terephthalate) (POT), have been investigated.
PPDO/PESu (75/25) blend system shows three different types of nuclei co-existing at Tc = 75 oC: double-spiral, single-spiral and concentric rings. For double-spiral spherulites, the lamellae turn into feather-like branches on the ridge which are arranged along the radial direction then submerge to the valley following bending away to the tangential direction consistent with the spiral direction. On the other hand, interior structure is composed of both edge-on lamellae and flat-on lamellae. Connecting the correlation between top surface and interior lamellar arrangement to construct 3-D crystal assembly for reasonably interpreting the periodic hierarchical structures. The same crystal assembly on the top surface can be found in lower composition of PPDO (50 %). However, the branch pattern as well as the width of the valley are influenced by different crystallization temperatures.
In POT system, we exploit atomic-force microscopy (AFM) and scanning electron microscopy (SEM) to reveal the mechanisms of formation of periodic hierarchical structures.
[1] R. Pearce and R. Marchessault, "Multiple melting in blends of isotactic and atactic poly(β-hydroxybutyrate)," Polymer, vol. 35, no. 18, pp. 3990-3997, 1994.
[2] H. Vázquez‐Torres and C. Cruz‐Ramos, "Blends of cellulosic esters with poly (caprolactone): Characterization by DSC, DMA, and WAXS," Journal of applied polymer science, vol. 54, no. 8, pp. 1141-1159, 1994.
[3] K. C. Yen and E. M. Woo, "Formation of dendrite crystals in poly(ethylene oxide) interacting with bioresourceful tannin," Polymer bulletin, vol. 62, no. 2, p. 225-235, 2009.
[4] L. Chang and E. M. Woo, "Effects of molten poly(3-hydroxybutyrate) on crystalline morphology in stereocomplex of poly(L-lactic acid) with poly(D-lactic acid)," Polymer, vol. 52, no. 1, pp. 68-76, 2011.
[5] Y. P. Huang, J. F. Kuo, and E. M. Woo, "Influence of molecular interactions on spherulite morphology in miscible poly(ethylene oxide)/epoxy network versus poly(ethylene oxide)/poly(4‐vinyl phenol) blend," Polymer international, vol. 51, no. 1, pp. 55-61, 2002.
[6] T.-Y. Chen, E. M. Woo, and S. Nagarajan, "Periodic Fractal-Growth Branching to nano-Structured Grating Aggregation in phthalic Acid," Scientific reports, vol. 10, no. 1, pp. 1-14, 2020.
[7] T.-Y. Chen, E. M. Woo, and S. Nagarajan, "Crystal aggregation into periodically grating-banded assemblies in phthalic acid modulated by molten poly(ethylene oxide)," CrystEngComm, vol. 22, pp. 467-477, 2020.
[8] Y.-L. Tseng, K.-N. Chuan, and E. M. Woo, "Unusual Ringed/Dendritic Sector Faces in Poly(butylene succinate) Crystallized with Isomeric Polymer," Industrial & Engineering Chemistry Research, vol. 59, no. 16, pp. 7485-7494, 2020.
[9] E. M. Woo, L.-Y. Wang, and S. Nurkhamidah, "Crystal lamellae of mutually perpendicular orientations by dissecting onto interiors of poly(ethylene adipate) spherulites crystallized in bulk form," Macromolecules, vol. 45, no. 3, pp. 1375-1383, 2012.
[10] B. Lotz and S. Z. Cheng, "A critical assessment of unbalanced surface stresses as the mechanical origin of twisting and scrolling of polymer crystals," Polymer, vol. 46, no. 3, pp. 577-610, 2005.
[11] J. Eshelby, "Screw dislocations in thin rods," Journal of Applied Physics, vol. 24, no. 2, pp. 176-179, 1953.
[12] J. Schultz and D. Kinloch, "Transverse screw dislocations: A source of twist in crystalline polymer ribbons," Polymer, vol. 10, pp. 271-278, 1969.
[13] A. Toda, T. Arita, M. Hikosaka, J. K. Hobbs, and M. J. Miles, "An atomic force microscopy observation of poly(vinylidene fluoride) banded spherulites," Journal of Macromolecular Science, Part B, vol. 42, no. 3-4, pp. 753-760, 2003.
[14] G. Lugito and E. M. Woo, "Interior lamellar assembly in correlation to top-surface banding in crystallized poly(ethylene adipate)," Crystal growth & design, vol. 14, no. 10, pp. 4929-4936, 2014.
[15] E. M. Woo, K.-C. Yen, Y.-T. Yeh, and L.-Y. Wang, "Biomimetically structured lamellae assembly in periodic banding of poly(ethylene adipate) crystals," Macromolecules, vol. 51, no. 10, pp. 3845-3854, 2018.
[16] C. H. Tu, E. M. Woo, and G. Lugito, "Structured growth from sheaf-like nuclei to highly asymmetric morphology in poly(nonamethylene terephthalate)," RSC advances, vol. 7, no. 75, pp. 47614-47618, 2017.
[17] E. M. Woo and Y.-F. Chen, "Single-and double-ring spherulites in poly (nonamethylene terephthalate)," Polymer, vol. 50, no. 19, pp. 4706-4717, 2009.
[18] E. M. Woo and S. Nurkhamidah, "Surface nanopatterns of two types of banded spherulites in poly(nonamethylene terephthalate) thin films," The Journal of Physical Chemistry B, vol. 116, no. 16, pp. 5071-5079, 2012.
[19] E. M. Woo, S. Nurkhamidah, and Y.-F. Chen, "Surface and interior views on origins of two types of banded spherulites in poly(nonamethylene terephthalate)," Physical Chemistry Chemical Physics, vol. 13, no. 39, pp. 17841-17851, 2011.
[20] E. M. Woo and G. Lugito, "Origins of periodic bands in polymer spherulites," European Polymer Journal, vol. 71, pp. 27-60, 2015.
[21] M.-S. Lee and E. M. Woo, "Systematic probing into periodic lamellar assembly via induced cracks in crystallized polyesters," Polymer, vol. 166, pp. 88-97, 2019.
[22] K.-K. Yang, X.-L. Wang, and Y.-Z. Wang, "POLY(p-DIOXANONE) AND ITS COPOLYMERS," Journal of Macromolecular Science, Part C: Polymer Reviews, vol. 42, no. 3, pp. 373-398, 2002, doi: 10.1081/mc-120006453.
[23] M. Sabino, G. Ronca, and A. J. Müller, "Heterogeneous nucleation and self-nucleation of poly(p-dioxanone)," Journal of materials science, vol. 35, no. 20, pp. 5071-5084, 2000.
[24] M. Sabino, J. Feijoo, and A. Müller, "Crystallisation and morphology of poly (p‐dioxanone)," Macromolecular Chemistry and Physics, vol. 201, no. 18, pp. 2687-2698, 2000.
[25] H. Yang, T. Bai, X. Xue, W. Huang, J. Chen, and B. Jiang, "Synthesis of metal‐free poly(p‐dioxanone) by phosphazene base catalyzed ring‐opening polymerization," Journal of Applied Polymer Science, vol. 133, no. 7, 2016.
[26] T. Zeng, Y. Wang, Q. Shen, Y. Yao, Y. Luo, and D. Cui, "Synthesis and Characterization of Amine-Bridged Bis (phenolate) Yttrium Guanidinates and Their Application in the Ring-Opening Polymerization of 1, 4-Dioxan-2-one," Organometallics, vol. 33, no. 23, pp. 6803-6811, 2014.
[27] H. Zhou et al., "Synthesis and characterization of lanthanide amides bearing phenoxy (quinolinyl) amide ligand and their application in the ring-opening polymerization of 1, 4-dioxan-2-one," Journal of Organometallic Chemistry, vol. 763, pp. 52-59, 2014.
[28] X. L. Zhu et al., "Ring‐opening polymerization of 1, 4‐dioxan‐2‐one initiated by lanthanum isopropoxide in bulk," Journal of Polymer Science Part A: Polymer Chemistry, vol. 46, no. 15, pp. 5214-5222, 2008.
[29] A. Gertzman and D. R. Thompson. (1986) United States Patent No. 4,591,630. Washington, DC: U. S. Patent and Trademark Office.
[30] F. V. Mattei and N. Doddi. (1984) United States Patent No. 4,440,789. Washington, DC: U. S. Patent and Trademark Office.
[31] H. Wang, J. H. Dong, K. Y. Qiu, and Z. W. Gu, "Synthesis of poly(1, 4‐dioxan‐2‐one‐co‐trimethylene carbonate) for application in drug delivery systems," Journal of Polymer Science Part A: Polymer Chemistry, vol. 36, no. 8, pp. 1301-1307, 1998.
[32] Y. Bai, P. Wang, W. Bai, L. Zhang, Q. Li, and C. Xiong, "Miscibility, Thermal and Mechanical Properties of Poly(para-dioxanone)/Poly(lactic-co-glycolic acid) Blends," Journal of Polymers and the Environment, vol. 23, no. 3, pp. 367-373, 2015.
[33] R. S. Bezwada, S. W. Shalaby, H. Newman Jr, and A. Kafrawy. (1987) United States Patent No. 4,643,191. Washington, DC: U. S. Patent and Trademark Office.
[34] R. S. Bezwada and K. Cooper. (1998). United States Patent No. 5,714,551. Washington, DC: U. S. Patent and Trademark Office.
[35] Z. Wang, C. Xiong, and Q. Li, "Crystallization and mechanical properties of biodegradable poly(p-dioxanone)/octamethyl-polyhedral oligomeric silsesquioxanes nanocomposites via simple solution casting method, " Bulletin of Materials Science, vol. 38, no. 6, pp.1589-1596, 2015.
[36] A. Pezzin, G. A. Van Ekenstein, C. Zavaglia, G. Ten Brinke, and E. Duek, "Poly(para‐dioxanone) and poly(L‐lactic acid) blends: thermal, mechanical, and morphological properties," Journal of applied polymer science, vol. 88, no. 12, pp. 2744-2755, 2003.
[37] Y. Bai, X. Liu, W. Bai, and C. Xiong, "Effect of calcium carbonate whisker content on the morphology, crystallization, and mechanical properties of poly (para‐dioxanone)/Calcium carbonate whisker composites," Polymer Composites, vol. 37, no. 12, pp. 3442-3448, 2016.
[38] M. Sabino, J. Feijoo, and A. Müller, "Crystallisation and morphology of neat and degraded poly(p-dioxanone)," Polymer degradation and stability, vol. 73, no. 3, pp. 541-547, 2001.
[39] W.-C. Nie, Q. Xiao, J.-M. Wu, F. Song, X.-L. Wang, and Y.-Z. Wang, "Dendritic crystallization and morphology control of random poly(p-dioxanone-co-butylene-co-succinate) copolyesters," European Polymer Journal, vol. 108, pp. 76-84, 2018.
[40] J.-B. Zeng, Q.-Y. Zhu, Y.-D. Li, Z.-C. Qiu, and Y.-Z. Wang, "Unique crystalline/crystalline polymer blends of poly(ethylene succinate) and poly(p-dioxanone): miscibility and crystallization behaviors," The Journal of Physical Chemistry B, vol. 114, no. 46, pp. 14827-14833, 2010.
[41] Y.-F. Chen, E. M. Woo, and S.-H. Li, "Dual types of spherulites in poly (octamethylene terephthalate) confined in thin-film growth," Langmuir, vol. 24, no. 20, pp. 11880-11888, 2008.
[42] E. M. Woo, G. Lugito, and S. Chang, "Three-dimensional interior analyses on periodically banded spherulites of poly(dodecamethylene terephthalate)," CrystEngComm, vol. 20, no. 14, pp. 1935-1944, 2018.
[43] J. M. Bell and M. F. Iskander, "A low-profile Archimedean spiral antenna using an EBG ground plane," IEEE antennas and wireless propagation letters, vol. 3, no. 1, pp. 223-226, 2004.
[44] E. W. Weisstein, "Fermat Spiral," From MathWorld–A Wolfram Web Resource (accessed 19/12/2013), 2013.
[45] C. F. Weiman and G. Chaikin, "Logarithmic spiral grids for image processing and display," Computer Graphics and Image Processing, vol. 11, no. 3, pp. 197-226, 1979.
[46] "https://commons.wikimedia.org/wiki/File:Droste_Daisy.jpg."
[47] "http://thesmarthappyproject.com/fibonacci-in-a-sunflower/."
[48] Y. Okabe, T. Kyu, H. Saito, and T. Inoue, "Spiral crystal growth in blends of poly(vinylidene fluoride) and poly(vinyl acetate), " Macromolecules, vol. 31, no. 17, pp. 5823-5829, 1998.
[49] G. Lugito and E. M. Woo, "Three types of banded structures in highly birefringent poly(trimethylene terephthalate) spherulites, " Journal of Polymer Science Part B: Polymer Physics, vol. 54, no. 13, pp. 1207-1216, 2016.
[50] G. Lugito and E. M. Woo, "Multishell Oblate Spheroid Growth in Poly(trimethylene terephthalate) Banded Spherulites, "Macromolecules, vol. 50, pp. 5898-5904, 2017.
[51] E. M. Woo, G. Lugito, J. H. Tsai, and A. J. Müller, "Hierarchically diminishing chirality effects on lamellar assembly in spherulites comprising chiral polymers, " Macromolecules, vol. 49, no. 7, pp. 2698-2708, 2016.
[52] 葉玉婷, “生物可分解聚酯高分子之晶核與球晶形貌相關性及內部晶板 裝之剖析,” 成功大學化學工程學系學位論文, 1-94, 2018, Tainan, Taiwan.
[53] 黃詣涵, “氫鍵作用力與結晶動力對聚丁二酸二乙酯結晶形態之影響,” 成功大學化學工程學系學位論文, 1-79, 2010, Tainan, Taiwan.