簡易檢索 / 詳目顯示

研究生: 黃光弘
Huang, Kuang-hung
論文名稱: 硫化鋅螢光粉披覆二氧化鈦和二氧化矽之製備與特性研究
Preparation and Characterization of SiO2 and TiO2 coated ZnS Phosphor Powders
指導教授: 陳引幹
Chen, In-Gann
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 128
中文關鍵詞: 硫化鋅、二氧化矽、二氧化鈦、溶膠-凝膠法、化學氣相沉積法
外文關鍵詞: TEM, X-ray diffraction, CVD nanocrystallites, Sol-Gel, ZnS, SiO2, TiO2
相關次數: 點閱:65下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    硫化鋅螢光粉體具有直接複合(direct recombination)能帶結構與寬能隙之特點,以及可調整可見光範圍段,是一理想的發光材料。目前商業上應用於陰極射線發光(cathodeluminescence)、場發射平面顯示器(field emission display),以及發光二極體元件(UV-LED)。由於硫化鋅螢光粉在封裝過程中,易受到水氣的影響而造成其表面鈍化,結晶性變差,使得其量子發光效率降低。本研究利用化學沉積法披覆保護層TiO2 於ZnS:Cu,Cl 螢光粉體表面,改變TiCl4 與H2O 的比例與在不同退火溫度條件下,合成不同性質的TiO2。由實驗結果得知在快速升溫退火(RTA)800oC 條件下所沉積出的TiO2薄膜為金紅石(rutile)相結構,其吸收係數為2.5×103(cm-1),此值與一般利用磁控濺鍍所沉積之薄膜相同。且在經過熱處理後可將殘存在螢光粉體的氯完全揮發,使螢光粉體的電致發光機率提升至100%。此外,在硫化鋅奈米級螢光粉體中,由於粉體團聚與表面缺陷會影響發光效率,披覆保護層於奈米級螢光粉體表面可提高其發光效率。故本研究利用共沉法合成ZnS: Mn 奈米級螢光粉體,及溶膠-凝膠法披覆 SiO2於螢光粉體上,達到表面修飾效果。由實驗結果得知添加分散劑六聚磷酸鈉具有修飾ZnS:Mn 表面之效果,改善顆粒團聚情況進而提升其發光效率,其光致發光強度相對於未添加分散劑之ZnS:Mn 螢光粉體可提升1.66 倍。同時以溶膠-凝膠法改質奈米粉體使其具有核層(core layer ZnS)和殼層(coating layer SiO2)之複合粉體。從TEM 的結果下顯示,SiO2 成功的包覆在ZnS:Mn 螢光粉體外圍,達到表面修飾效果,減少能量損失於表面上,其光致發光強度相對於未披覆之ZnS:Mn 螢光粉體可提升7.84 倍。

    Abstract
    Zinc sulfide (ZnS) phosphors exhibit direct recombination and wide band gap which can be applied for cathodeluminescence, field emission display and UV-LED. However, ZnS phosphors showed aging deterioration by moisture intrusion in the packing process of light emitting diode (LED). In this research, TiO2-coated ZnS:Cu,Cl phosphors are synthesized by chemical vapor deposition with different ratios of H2O/TiCl4 and annealing temperatures. The structure was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The optical properties were measured including photoluminescence spectroscopy (PL) and the absorbance. The XRD results revealed that the structure of TiO2 film is rutile under the annealing temperature of 800oC. The absorption coefficient of TiO2 by CVD is equal to 2.5×103 which is as that done by sputtering process. The residual Cl in the encapsulating film vanished by rapid thermal annealing (RTA) at 800oC. This elimination of Cl improves the electro-luminescence (EL) probabil to 100%, which is an indication of enhancement of the lifetime of the ZnS phosphor. Additionally, the nano-scaled ZnS:Mn phosphors were prepared by co-precipitation reaction. These nanoparticles are stabilized using polyphosphates of sodium hexametaphosphate (SHMP). The nano-scaled ZnS:Mn phosphors were coated with SiO2 via sol-gel reaction of TEOS. The TEM results showed that ZnS:Mn nanocrystallites were well-dispersed in SiO2. The PL intensity of SiO2-coated ZnS:Mn phosphors is 7.84 times to that of the non-coated ones. The enhancement was resulted from the reduction of surface non-radiation centers. Most importantly, we developed oxidant surfaces (TiO2- or SiO2-coated) ZnS phosphors with varied sizes that would enhance biological compatibility, mechanical , as well as high temperature chemical stability. At the same time, they changed properties of phosphors such as electricity, catalysis, hydrophilic or hydrophobic properties to enhance their durability and lifetime for various applications.

    摘要........................................... I Abstract.......................................II 致謝...........................................IV 目錄............................................V 表目錄.......................................VIII 圖目錄.........................................IX 第一章 緒論.....................................1 1-1 前言........................................1 1-2 研究動機與目的..............................3 第二章 理論基礎與文獻回顧.......................5 2-1 螢光材料簡介................................5 2-2 螢光體材料組成..............................5 2-3 發光中心之種類與原理........................7 2-4 發光機制與應用..............................9 2-5 螢光體發光原理.............................11 2-5.1 螢光體能量之激發與吸收...................11 2-5.2 螢光放射和非輻射轉移(nonradiative transition) ..................................13 2-6 硫化鋅型螢光體之簡介.......................14 2-6.1 發展歷史.................................14 2-6.2 硫化鋅性質與應用.........................15 2-6.3 硫化鋅晶體結構介紹.......................15 2-6.4 ZnS:Mn 螢光光譜介紹......................16 2-7 奈米材料...................................16 2-7.1 奈米材料簡介.............................16 2-7.2 奈米材料之基本性質.......................17 1. 小尺寸效應..................................18 2. 表面效應....................................18 3. 量子尺寸及量子穿隧效應......................19 2-7.3 奈米粉末表面改質.........................19 2-7.4 奈米粉體的分散...........................21 2.8 螢光體製程技術及原理.......................22 2-9 奈米粉末表面改質製程技術及原理.............23 2-9.1 溶膠-凝膠法..............................23 2-9.2 化學氣相沉積法...........................24 2-10 螢光體發光時特性測量......................25 2-10.1 亮度量測................................25 2-10.2 放射光譜量測............................25 第三章 實驗方法及步驟..........................45 3-1 實驗藥品...................................45 3-2 實驗步驟...................................46 3-2.1 共沈法 (Coprecipitation) ................46 3-2.2 奈米硫化鋅螢光粉表面改質sol-gel 製程.....46 3-2.3 奈米硫化鋅螢光粉表面改質化學氣相沉積法(CVD) .........................................47 3-2.4 螢光粉表面改質之腐蝕研究.................47 3-2.5 電激發光元件的製作.......................47 3-3 儀器設備...................................48 第四章 結果與討................................57 4-1 奈米硫化鋅摻錳螢光粉合成與發光性質之研究...57 4-1.1 ZnS:Mn 奈米螢光粉體之合成與結構分析......58 4-1.2 Mn 添加量對ZnS:Mn 發光特性之影響.........59 4-1.3 分散劑添加與ZnS:Mn 之粒徑之發光影響......61 4-2 螢光粉體ZnS 表面改質之研究.................73 4-2.1 化學沉積法披覆TiO2 於螢光粉體............73 4-2.1.1 TiO2 之結構與穿透分析..................73 4-2.1.2 ZnS:Cu,Cl 披覆TiO2 表面型態分析........77 4-2.1.3 表面改質對ZnS: Cu,Cl 螢光粉體之發光特性影響.............................................78 4-2.2 凝膠-溶膠法披覆 SiO2 於螢光粉體..........91 4-2.2.1 SiO2 之合成與批覆研究..................91 4-2.2.2 表面改質對ZnS:Mn 奈米粉體之發光特性影響93 4-2.2.3 ZnS:Mn 披覆SiO2 之FTIR 與結構分析......94 4-2.2.4 ZnS:Mn 披覆SiO2 表面型態分析...........95 4-2.2.5 表面改質對ZnS:Mn 奈米粉體之光吸收特性影響.............................................96 4-3 螢光粉表面改質NaOH 之腐蝕研究.............111 4-3.1 不同腐蝕時間之表面型態SEM 分析..........111 4-3.2 表面蝕刻對ZnS:Cu,Cl 粉體之發光特性影響..112 4-4 綜合討論..................................113 第五章 結論...................................120 參考文獻......................................122 自述..........................................128

    參考文獻
    [1] K. Hirabayashi, H. Kozawaguchi and B. Tsujiyama, Kenkyu Jitsuyoka Hokoku, 34, 525, 1985 [in Japanese].
    [2] K. D. Budd: U.S. Patent 5418062, 1995.
    [3] K. Nagaveni, G. Sivalingam, M. S. Hegde, Madras Giridhar, “Solar photocatalytic degradation of dyes: High activity of combustion synthesized nano TiO2 “, Applied Catalysis B: Environmental, v48, n2, p83-93, 2004.
    [4] Ernst, K., Belaidi, A., Konenkamp, R., “Solar cell with extremely thin absorber on highly structured substrate “, Semiconductor Science and Technology, v18, n6, p475-479, 2003.
    [5] Singh, R. S., Rangari, V. K., Sanagapalli, S., Jayaraman, V., Mahendra, S., Singh, V. P., “Nano -structured CdTe, CdS and TiO2 for thin film solar cell applications”, Solar Energy Materials and Solar Cells, v82, n1-2, p315-330, 2004.
    [6] Shigeo Shionoya, “Phosphor handbook”, CRC Press LLC, New York, U.S.A, 1999.
    [7] G. Blasse and B. C. Grabmaier, “Luminescent Materials”, Springer Verlag, Berlin Heidelberg, Germany, 1994.
    [8] R. C. Ropp, “Luminescence and the solid state”, Elsevier Science Publishers, B. V., The Netherlands, 1991.
    [9] D. L. Dexter, Chem. Phys., 22, 6, 1063, 1954.
    [10] B. Walter, Ann. Physik, 36, 502, 518, 1889.
    [11] P. D. Johnson and F. E. Williams, J. Chem. Phys., 18, 1477, 1950.
    [12] 楊俊英著,“電子產業用螢光材料之應用調查”.工研院,民國81 年。
    [13] 陳昱霖,“石榴石(Y3Al5O12)螢光體之合成與性質研究”,國立成功大學材料科學及工程學系碩士論文,民國90 年。
    [14] 陳怡冰,“鹼土硫化物螢光粉之新穎合成與發光特性之研究”,國立交通大學應用化學系碩士論文,民國90 年。
    [15] K. S. Suslick, “Sonochemistry”, Science, v23, p1439-1445, 1990.
    [16] 蘇勉曾、吳世康,“發光材料”,發光材料,第四卷,1~39 頁.
    [17] J. A. DeLuca, J. Chem. Edu., 57, 541, 1980.
    [18] D. R. Vij and N. singh, “Luminescent and Related Properties of II-VI semiconductors”, Nova Science Publishers, 1998.
    [19] 唐自標,“硫化鋅系螢光材料的製備與其發光特性之研究”,私立大同工學院材料工程研究所博士論文,民國87 年。
    [20] Leverenz, h. W., “An Introduction to Luminescence of Solids”, John Wiley & Sons, New York, 1950.
    [21] R. N. Bhargave, D. Gallagher, X. Hong and A. Nurmikko, “Optical Properties of Manganese-Doped Nanocrystals of ZnS”, Physical Review Letters, v72, n3, p416, 1994.
    [22] Hua Yang, zichen Wang, Lizhu Song, Muyu Zhao, Yimin Chen, Kai Dou, Jiaqi Yu, Li Wang, “Study of optical properties of manganese doped ZnS nanocrystals’’, Materials Chemistry and Physics, v47, p249-251, 1997.
    [23] L. M. Gan, B. Liu, S. J. Chua, G. L. Loy, and G. Q. Xu, “Enhanced photoluminescence and Characterization of Mn-Doped ZnS Nanocrystallites Synthesized in Microemusion’’, Langmuir, v13, p6427-6431, 1997.
    [24] M. Ihara, T. Igarashi, T. Kusunoki, K.Ohno, “Preparation and Characterization of Rare Earth Activators Doped Nanocrystal Phosphors’’, J. Electrochem. Soc., v147, n6, p2355-2357, 2000.
    [25] Yadong Li, Yi Ding, Yue Zhang, Yitai Qian, “Photophyscial properties of ZnS quarm dots’’, J. Physics and Chemistry of Solids, v60, p13-15, 1999.
    [26] Kelly Sooklal, Brian S. Cullum, s. Michael Angel, Catherine J. Murphy, “Photophyscial properties of ZnS Nanoclusters with Spatially Localized Mn2+’’, J. Phys. Chem., v100, p4551-4555, 1996.
    [27] 林麗玉,“奈米硫化鋅與硫化鋅鎘螢光體微粒之製備、特性鑑定與發光特性研究”,國立交通大學應用化學系碩士論文,民國90年。
    [28] A. H. Kitai, “Solid State Luminescence”, Chapman&Hall, London, U.K., 1993.
    [29] Romesh C. SHARMA, “Thermodynamic analysis and phase equilibria calculations for the Zn-Te, Zn-Se and Zn-S systems’’, J. Crystal Growth, v88 , p193-204, 1988.
    [30] P. Goldberg, “Luminescence of Inorganic Solids”, Acadamic Press Inc., New York, 1966.
    [31] B. Henderson and G.F. Imbuschr, “Optical Spectroscopy of Inorganic Solids”, Clarendon Press. Oxford, 1989.
    [32] 徐春祥,黃磊,陸祖宏,發光學報, 20, 239, 1999。
    [33] 李風生,“超細粉體技術”,國防工業出版社,北京,中國, 2000。
    [34] 張立德,牟季美,“奈米材料和奈米結構”,科學出版社,北京,中國, 2001。
    [35] Y. Chen, S. Patel, Y. Ye, D. T. Shaw, and L. Guo, ” Field emission from aligned high-density graphitic nanofibers”, Appl. Phys. Lett. v73, p2119, 1998.
    [36] 高于迦,〝摻雜錳硫化鋅奈米微粒之製備與其發光特性之研究〞,大同大學材料工程研究所, 2001.
    [37] N.I. Kovtyukhova, E.V. Buzaneva, C. C. Waraksa, T. E. Mallouk,“ Ultrathin nanoparticle ZnS and ZnS: Mn films: Surface sol-gel synthesis, morphology, photophysical properties “, Materials Science and Engineering B, v69, p411–417, 2000.
    [38] R. K. Iler, “Colloidal silica”, Surface and Collid Science, v6, p1-100, 1973.
    [39] 粘永堂、陳引幹”電致發光奈米螢光粉之研製",國科會報告,2002。
    [40] JCPDS-ICCD,PDF-number:800020.
    [41] B. D. Cullity, S. R. Stock, “Elements of X-Ray Diffraction third edition”.
    [42] 劉如熹、紀喨勝, ”紫外光發光二極體用螢光粉介紹”, 2003.
    [43] Ali Azam Khosravi, U. A. Bhagwat, Murali Sastry, S. K. Kulkarni,“Green luminescence from copper doped zinc sulphide quantum particles’’, Appl. Phys. Lett. v67, n18, p2702, 1995.
    [44] H. C. Warad, S. C. Ghosh , B. Hemtanon, C. Thanachayanont, J. Dutta, “Luminescent nanoparticles of Mn doped ZnS passivated with sodium hexametaphosphate”, Science and Technology of Advanced Materials, v6, n3-4, p296–301, 2005.
    [45] U. Diebold, “The surface science of titanium dioxide”, Surface Science Reports, v48, p53-229, 2003.
    [46] T. Hurlen, “On the defect structure of rutile”, Acta. Chem. Scand. v13, p365, 1959.
    [47] K. Hirabayashi, H. Kozawaguchi and B. Tsujiyama, ”Study on A-C powder EL phosphor deterioration factors”, J. Electrochem. Soc., v130, n11, p2259-2263, 1983.
    [48] R.A. Spurr, H. Myers, “Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer”, Anal. Chem., n29, p760-762, 1957.
    [49] Jaan Aarik, Aidla Aleks, Kiisler Alma-Asta, Uustare Teet, Sammelselg, Vaino, ” Effect of crystal structure on optical properties of TiO2 films grown by atomic layer deposition”, Thin Solid Films, v305, n1~2, p270-273, 1997.
    [50] Sawada Masato, Yamaguchi Kenichi, ”Characteristics of light emission lifetime of electroluminescent phosphor encapsulated by titanium-silicon-oxide film”, Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, v 41, n 6 A, June, p 3885-3889, 2002.
    [51] Iler I. K. The Chemistry of Silica and Silicates. New York: Cornell University Press, 1995.
    [52] Parfitt G. D. Croat Chem. Acta., 45, 189-194, 1973.
    [53] Furlong D. N., Sing K. S., Colloid Interface Sci., 69, 409-419, 1979.
    [54] Morrison C., Kiwi J., J. Chem. Soc. Faraday Trans., 85, 1043-1047, 1989.
    [55] Ishikawa T., Matijevic E., “Formation of monodispersed pure and coated spindle-type iron particles”, Langmuir, v4, n1, p26-31, 1988.
    [56] Philipase A. P., Van Bruggen M. P. B., Pathmamanoharan C.,“Magnetic silica dispersions. Preparation and stability of surface-modified silica particles with a magnetic core”, Langmuir, v10, n1, p92-99, 1994.
    [57] Shih W., Kisailus D., Wei Y. Mater., ” Silica coating on barium titanate particles”, Materials Lett., v24, n1-3, p13-15, 1995.
    [58] Correa-Duarte M. A., Giersig M., Liz-Marzan L. M. “Stabilization of CdS semiconductor nanoparticles against photodegradation by a silica coating procedure” Chem. Phys. Lett., v286, n5, p497-501, 1998.
    [59] L. Zhou, Yan, Shanshan, Tian, Baozhu, Zhang, Jinlong, Anpo, Masakazu , “Preparation of TiO2-SiO2 film with high photocatalytic activity on PET substrate”, Materials Letters, v60, n3, p396–399, 2006.
    [60] Wilson, A. D., Holmes, J. P., “Titanium-based spectrally selective surfaces for solar thermal systems”, Solar Engergy Materials, v9, p347-363, 1983.

    下載圖示 校內:2008-07-26公開
    校外:2008-07-26公開
    QR CODE