簡易檢索 / 詳目顯示

研究生: 吳佳儀
Wu, Chia-Yi
論文名稱: 可供組織胺檢測的毛細管電泳電化學晶片之研發
Development of Capillary Electrophoresis Chip with Electrochemical Detector for Detecting Histamine
指導教授: 張志涵
Chang, Chih-Han
張憲彰
Chang, Hsien-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 94
中文關鍵詞: 電化學檢測毛細管電泳晶片組織胺
外文關鍵詞: capillary electrophoresis chip, electrochemical detection, histamine
相關次數: 點閱:113下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   探討過敏反應的產生機制和發現過敏原,是目前眾所積極努力的方向。目前臨床上是以皮膚測試與特異性IgE檢測為主,此固然可檢測出患者各自的過敏原,但本質性的會有其涵蓋過敏原不足,且無法即時偵測出某些藥物過敏反應,是此類檢測上的瓶頸。過敏反應所產生的不適症狀,終究是病患體內的肥大細胞乃至嗜鹼細胞被活化後,釋放如組織胺等關鍵性發炎物質至組織或血液中所導致,故藉由偵測過敏反應所釋放出之物質,是檢測過敏反應發生與否之最直接的方法。基於此,本研究著力於一種可便於檢測組織胺的毛細管電泳電化學(CEEC)晶片的研發。我們利用微製程的技術,製作出具有電化學微小電極之玻片與十字形PDMS微管道(5 cm),並共同經氧電漿處理及矽烷化反應修飾後接合而成。由偵測結果顯示,此修飾完成的微管道呈現4.5 x 10-4 cm2/Vs以上的電滲流力(EOF),且CEEC晶片在7天內均可維持在極佳的穩定度。在組織胺之電化學活性探究上,先以循環伏安法量測,由結果得知組織胺於金工作電極上,約在+0.8 V (vs. Ag/AgCl)附近,可偵測到其氧化之電流值且與濃度呈正相關。最後在晶片系統測試時,設定予100 V/cm的電場進行30 sec注入,繼之以同樣電場來進行毛細管電泳分離,此時在170 sec即可偵測到組織胺的氧化電流訊號。此系統對組織胺的檢測極限可達10-4 M,其線性範圍在0.5 ~ 2 mM之間 (R2=0.99)。本團隊之CEEC晶片系統原已約可在130與160 sec分別偵測出Dopamine與Catechol的訊號,加上本研究之展進,將有利於較複雜的人體血清乃至於細胞級樣本之偵測。

     Recently, numerous researchers investigated the mechanism of the allergic reaction aggressively in order to identify possible allergens and search for the effective treatments. The clinical diagnosis of allergy is based on skin test or the determination of immunoglomulin E (IgE) level. However, it is difficult to immediately identify the allergens due to limited allergens which were available in the lab tests used clinically now. The cross-linking of IgE between mast cells and basophils is known to cause the release of many mediators which could initiate the acute allergic reaction. For this reason, our research has focused on the development of capillary electrophoresis chip with electrochemical detector (CEEC) for detecting allergic mediators such as histamine. On the basis of the concept and technology of microfabrication, a micro-electrochemical chip and PDMS micro-channel were fabricated by MEMS process. The CEEC chips were modified by O2 plasma treatment and silianization for altering the hydrophobicity of PDMS surface, enhancing electroosmotic flow and stabilizing the flow over time. The stability of the resulting CEEC chip we studied over a span of 7 days as was higher than 4.5 x 10-4 cm2/Vs. In the study of electro-oxidation behavior of histamine, it was oxidized at gold electrode at +0.8 V. When the EOF of the chip is around 4 x 10-4 cm2/Vs, histamine was detected at 170 sec after separation. Histamine responded linearly from 0.5 to 2 mM and the limit of detection is 10-4M. It was concluded that, a stable detecting system has been developed. According to our previously research, dopamine and catechol were detected separately around 130 sec and 160 sec after separation, adding up our present study, many advantageous features will make it attractive to clinical investigators as a powerful adjunct for the diagnosis and treatment of allergy in the future.

    摘 要 I Abstract II 誌謝 III 目次 IV 表目錄 VII 圖目錄 VIII 第1章 序論 1 1.1 研究背景與目的 1 1.2 過敏反應疾病的檢查方法 5 1.2.1 皮膚測試 5 1.2.2 血清測試 7 1.3 目前用來量測組織胺的方法 9 1.3.1 高效能液相層析 (High Performance Liquid Chromatography) 10 1.3.2 免疫分析法 (Immunoanalysis) 11 1.3.3 離子選擇性電極 (Ion-Selective Electrode) 12 1.3.4 氣相層析/質譜儀 (Gas Chromatography/Mass Spectrometry) 13 1.4 毛細管電泳的原理 14 1.4.1 電泳遷移率 (Electrophoretic Mobility, me) 16 1.4.2 電泳樣本濃縮的原理 18 1.5 電滲流 (Electroosmotic Flow, EOF) 19 1.5.1 影響電滲流遷移率的因素 21 1.5.2 毛細管電泳中的流速剖面圖 24 1.6 毛細管電泳圖譜 (Electropherogram) 25 1.7 毛細管電泳的效能評估 26 1.8 可應用毛細管電泳之偵測方法 30 1.8.1 紫外光/可見光吸收偵測法 (UV/Vis Absorption Detection) 30 1.8.2 螢光偵測法 (Fluorescence Detection) 31 1.8.3 雷射激發螢光偵測法 (Laser Induced Fluorescence, LIF) 32 1.8.4 質譜儀偵測法 (Mass Spectrometric Detection) 33 1.8.5 電化學偵測法 (Electrochemical Detection) 33 1.9 研究架構 39 第2章 實驗設備與材料方法 40 2.1 研究設備 40 2.2 實驗藥劑與配製方法 41 2.3 毛細管電泳晶片之製作 42 2.3.1 三極式玻璃電極晶片的製作 42 2.3.2 PDMS微管道晶片的製作 47 2.3.3 微小電極與PDMS微管道的接合方式 49 2.4 實驗系統架構 51 2.4.1 EOF量測系統架構 51 2.4.2 三極式電化學槽系統架構 52 2.4.3 毛細管電泳系統硬體架構 52 2.5 實驗方法 55 2.5.1 毛細管電泳晶片EOF穩定性之探討 55 2.5.2 組織胺之電化學活性評估 60 2.5.3 組織胺檢量線之建立 61 2.5.4 干擾物之測定 61 第3章 結果與討論 62 3.1 晶片修飾後之EOF大小及穩定性 62 3.1.1 氧電漿處理 64 3.1.2 表面矽烷化反應 67 3.1.3 動態修飾 69 3.1.4 三種修飾方法之比較 70 3.2 組織胺電化學活性評估 72 3.2.1 循環伏安圖 72 3.2.2 安培法量測 75 3.3 毛細管電泳晶片的實驗結果 76 3.3.1 偵測電位之選擇 76 3.3.2 毛細管電泳最佳化參數之選擇 78 3.3.3 校正曲線及偵測極限 79 3.3.4 系統之再現性 80 3.3.5 真實樣本中干擾物之評估 82 3.4 實驗中所遭遇到的困難及瓶頸 84 第4章 結論 85 4.1 最佳化之晶片修飾方法 85 4.2 Histamine分離與檢測之最佳實驗條件 85 4.3 未來發展 86 4.3.1 氧電漿處理之最佳化參數 86 4.3.2 改變電極晶片製作之方式 87 4.3.3 樣本注入之方式 87 參考文獻 88

    1. Medical and Scientific Illustrations. http://www.rit.edu/~japfaa/index.html
    2. Roitt, J. Brostoff, and D. Male, Immunology, 6th ed. London: Mosby, 2001.
    3. Hirschberg.“Anaphylactoid reaction to aspirin”Allergy Proc. 1990, 11, 249-250.
    4. 上野川修一著, 施聖茹譯, 圖解過敏與免疫機制, 台灣:世茂出版社, 2002.
    5. Pharmacia Diagnostics Taiwan. http://www.allergycap.com.tw/home.asp
    6. L. M. Lichtenstein, P. S. Norman, and J. T. Connell,“Comparison between skin-sensitizing antibody titers and leukocyte sensitivity measurements as an index of the severity of ragweed hay fever” J Allergy 1967, 40, 160-167.
    7. P. Demoly, B. Lebel, D. Messaad et al. “Predictive capacity of Histamine release for the diagnosis of drug allergy”Allergy 1999, 54, 500-506.
    8. P. K. Zia, N. Namei, A. Patel et al.“Fully automated enzyme immunoassay system for the determination of activatorspecific Histamine release from basophils in whole blood”Clin. Chem. 1998, 44, 2063-2068.
    9. A. Norgaard, P. S. Skov, and C. Bindslev-Jensen,“Egg and milk allergy in adults: comparison between fresh foods and commercial allergen extracts in skin prick test and Histamine release from basophils”Clin Exp Allergy 1992, 22, 940-947.
    10. T. M. Li, K. J. Kontis, F. Rance et al.“Clinical evaluation of a new fully automated enzyme immunoassay for basophil Histamine release in whole blood”Inflamm Res 2000, 49(Suppl. 1), S49- S50.
    11. S. Mamiya, H. Ito, M. Suzuki et al.“Clinical evaluation of Histamine release test: a novel method for identifying allergens from the whole blood of allergic patients”Acta Otolaryngol Supplement 1996, 525, 93-100.
    12. J. Kirschbaum, K. Rebscher, H. Bruckner,“Liquid chromatographic determination of biogenic amines in fermented foods after derivatization with 3,5-dinitrobenzoyl chloride” J. Chromatogr. A 2000, 881, 517– 530
    13. D. L. Walters, J. E. James, et al“A comparison of fluorescence versus chemiluminescence detection for analysis of the fluorescamine derivative of Histamine by HPLC”Biomed. Chromatogr. 1994, 5, 207-211
    14. T. Yoshitake, F. Ichinose, et al.“A sensitive and selective determination method of Histamine by HPLC with intramolecular excimer-forming derivatization and fluorescence detection” Biomed. Chromatogr. 2003, 17, 509-516.
    15. K. Plhel, S. Hsieh, J. W. Jorgenson, and R. M. Wightman,“Electrochemical detection of Histamine and 5-hydroxytryptamine at isolated mast cells”Anal. Chem. 1995, 67, 4514-4521.
    16. Nobelprize.org. http://nobelprize.org/medicine/laureates/1977/index.html
    17. T. Katsu, and H. Hirodo,“Determination of Histamine release from mast cells using a Histamine-sensitive membrane electrode” Anal. Chim. Acta, 1999, 396, 189–193.
    18. H. Morita, M. Konishi,“Electrogenerated chemiluminescence derivatization reagents for carboxylic acids and amine in high-performanceliquid chromatography using tris (2,2′-bipyridine) ruthenium (II)”Anal. Chem. 2002, 74, 1584-1588.
    19. J. W. Jorgenson and K. D. Lukacs,“Zone electrophoresis in open-tubular glass capillaries”Anal. Chem., 1981, 53, 1298-1302.
    20. H. Wätzig, and S. Günter, “Capillary Electrophoresis – A High Performance Analytical Separation Technique”, Clin. Chem. Lab. Med. 2003, 41, 724-738.
    21. S. Terabe, K. Otsuka, and H. Nishi,“Separation of enantiomers bycapillary electrophoretic techniques”J Chromatogr A, 1994, 666, 295–319.
    22. A. Paulus, A. Klockow,“Detection of carbohydrates in capillary electrophoresis”J Chromatogr A, 1996, 720, 353–376.
    23. R. M. Guijt, C. J. Evenhuis, et al.“Conductivity detection for conventional andminiaturised capillary electrophoresis systems”Electrophoresis, 2004, 25, 4032-4057.
    24. Q. Jianhua, F. Yingsing, et al.“Native fluorescence detection of flavin derivatives by microchip capillary electrophoresis with laser-induced fluorescence intensified charge-coupled device detection”J Chromatogr A, 2004, 1027, 223–229.
    25. L. L. Moroz, R. Gillette, J. V. Sweedler,“Single-cell analyses of nitrergic neurons in simple nervous systems”J. Exp. Biol., 1999, 202, 333–341.
    26. B. Salete, K. Jun, et al.“Chip-based P450 drug metabolism coupled to electrospray ionization-mass spectrometry detection”Anal. Chem., 2003, 75, 6430-6436.
    27. W. R. Vandaveer IV, S. A. P. Farmer, et al.“Recent developments in electrochemical detection for microchip capillary electrophoresis”Electrophoresis, 2004, 25, 3528-3549.
    28. J. Tanyanyiwa, S. Leuthardt, P. Hauser, C.,“Conductimetric and potentiometric detection in conventional and microchip capillary electrophoresis”Electrophoresis, 2002, 23, 3659-3666.
    29. R. W. Cattrall, H. Freiser,“Coated wire ion-selective electrodes”Anal. Chem., 1971, 43, 1905-1906.
    30. A. T. Woolley, K. Lao, et al.“Capillary electrophoresis chips with integrated electrochemical detection”Anal. Chem. 1998, 70, 684-688.
    31. X. Huang, R. N. Zare, S. Sloss, A. G.. Ewing,“End-column detection for capillary zone electrophoresis” Anal. Chem. 1991, 63, 189-192.
    32. S. R. Wallenborg, L. Nyholm, C. E. Lunte,“End-column amperometric detection in capillary electrophoresis: influence of separation-related parameters on the observed half-wave potential for dopamine and catechol”Anal. Chem., 1999, 71, 544-549.
    33. P. Ertl, C. A. Emrich, et al.,“Capillary electrophoresis chips with a sheath-flow supported electrochemical detection system”Anal. Chem. 2004, 76, 3749-3755.
    34. D. P. Manica, Y. Mitsumori, A. G. Ewing,“Characterization of electrode fouling and surface regeneration for a platinum electrode on an electrophoresis microchip”Anal. Chem., 2003, 75, 4572-4577.
    35. R. S. Martin, K. L. Ratzlaff, et al.,“In-channel electrochemical detection for microchip capillary electrophoresis using an electrically isolated potentiostat”Anal. Chem., 2002, 74, 1136-1143.
    36. C. C. Wu, R. G.Wu, J.-G. Huang, Y.-C. Lin, H. C. Chang,“Three-electrode electrochemical detector and platinum film decoupler integrated with a capillary electrophoresis microchip for amperometric detection”Anal. Chem. 2003, 75, 947-952.
    37. M. A. Roberts, J. S. Rossier, et al.,“UV laser machined polymer substrates for the development of microdiagnostic systems”Anal. Chem. 1997, 69, 2035-2042.
    38. R. M. McCormick, R. J. Nelson, et al.,“Microchannel electrophoretic separations of DNA in injection-molded plastic substrates”Anal. Chem., 1997, 69, 2626-2630.
    39. D. C. Duffy, G. M. Whitesides, et al.,“Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)”Anal. Chem. 1998, 70, 4974-4984.
    40. X. Ren, M. Bachman, et al.“Electroosmotic properties of microfluidic channels composed of poly(dimethylsiloxane)”J Chromatogr B 2001, 762, 117-125.
    41. X. Huang, M. J. Gordon, and R. N. Zare,“Current-monitoring method for measuring the electroosmotic flow rate in capillary zone electrophoresis”Anal. Chem. 1988, 60, 1837-1838.
    42. H. Makamba, J. H. Kim,“Surface modification of poly(dimethylsiloxane) microchannels” Electrophoresis 2003, 24, 3607-3619.
    43. J. J. Pesek, and M. T. Matyska,“Methods for the modification and characterization of oxide surfaces”Interface Science 1997, 5, 103-117.
    44. C. D. Garcia, B. M. Dressen, et al.“Comparison of surfactants for dynamic surface modification of poly(dimethylsiloxane) microchips” Electrophoresis 2005, 26, 703-709
    45. M. Y. Badal, M. Wong, et al.“Protein separation and surfactant control of electroosmotic flow in poly(dimethylsiloxane)-coated capillaries and microchips”J. Chromatogr. A 2002, 947, 277-286.
    46. Q. Weng, F. Xia, W. Jin“Determination of histamine by capillary zone electrophoresis with end-column amperometric detection at a carbon fiber microdisk array electrode”Electroanalysis 2001, 13, 1459-1461.
    47. D. P. Manica, Y. Mitsumori, A. G. Ewing,“Characterization of electrode fouling and surface regeneration for a platinum electrode on an electrophoresis microchip”Anal. Chem. 2003, 75, 4572-4577.
    48. V. Carralero, J. M. PingarrÓn, et al.“Pulsed amperometric detection of histamine at glassy carbon electrodes modified with gold nanoparticles”Electroanalysis 2005, 17, 289-297.

    下載圖示 校內:2006-07-21公開
    校外:2006-07-21公開
    QR CODE