簡易檢索 / 詳目顯示

研究生: 顏碩文
Yen, Shuo-Wen
論文名稱: 具奈米結構及量子點發光層之反置白光高分子發光二極體研究
Investigation of Inverted Polymer White LED with Quantum Dots Emission Layer and Nanorod Structure
指導教授: 李清庭
Lee, Ching-Ting
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 奈米積體電路工程碩士博士學位學程
MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 65
中文關鍵詞: 量子點反置白光高分子發光二極體ITO奈米柱陣列
外文關鍵詞: quantum dots, inverted white light polymer light-emitting diodes, ITO nanorod arrays
相關次數: 點閱:104下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用高分子材料聚(N-乙烯咔唑)(PVK)與CdSe/ZnS核殼量子點材料來製作反置白光有機發光二極體之發光層,並利用射頻磁控濺鍍系統來製作氧化鋅薄膜當電子注入層。為了獲得白光將使用不同尺寸的量子點做混合並搭配色度座標圖來找出最佳的混合比例,接著探討發光效率對於不同製程腔壓與厚度之氧化鋅薄膜的關係,再利用雷射干涉曝光和濕式蝕刻製作ITO奈米柱陣列,最後將氧化鋅薄膜成長於ITO奈米柱上,奈米柱陣列可有效增加接觸面積並大幅增加電子注入至發光層的數量,因此增加元件的發光亮度及發光效率。加入ITO奈米柱陣列週期為1.5 μm的反置白光有機發光二極體其最高發光亮度提升至16333 cd/m2,而最大發光效率提升至3.12 cd/A。

    In this study, poly (N-vinylcarbazole) (PVK) and CdSe/ZnS core-shell quantum dots were used to fabricate the emission layer of the white light organic light-emitting diode and fabricated by RF magnetron sputtering. The ZnO film was an electron injection layer. In order to obtain white light, we used different sizes of quantum dots to do the mix and used CIE coordinate to find the best mixing ratio, and then discussed the luminous efficiency for different chamber pressure and thickness of the relationship between ZnO film, and then use the laser interference exposure and wet etching method to produce the ITO nanorod arrays. Finally, ZnO films were grown on ITO nanorod arrays structure. The nanorod arrays structure were effective in increasing the contact area and significantly increasing the number of electrons injected into the emission layer which promoted the luminous brightness and luminous efficiency. The maximum luminous brightness of the inverted white light organic light emitting diodes with the ITO nanorod arrays structure period for 1.5 um was increased to 16333 cd/m2, while the maximum luminous efficiency was increased to 3.12 cd/A.

    摘要 I Abstract II 致謝 VII 目錄 VIII 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 白光有機發光二極體 2 1.3 量子點發光二極體 3 1.4 研究動機與目的 4 參考文獻 8 第二章 原理 11 2.1 有機發光二極體元件結構 11 2.2 有機發光二極體操作原理 13 2.3 有機材料的吸收與放射 14 2.4 主客體發光機制 15 2.5 元件電流注入機制 16 2.6 量子侷限效應 18 2.7 量子尺寸效應 19 2.8 雷射干涉微影技術 19 參考文獻 27 第三章 實驗方法與步驟 29 3.1 實驗架構 29 3.2 實驗材料 29 3.2-1 電子傳輸層材料 29 3.2-2 發光層材料 30 3.2-3 電洞注入層材料 30 3.2-4 金屬電極材料 30 3.3 實驗流程 31 3.3-1 ITO基板圖案化 31 3.3-2 ITO奈米柱陣列製備 32 3.3-3 電子傳輸層製作 33 3.3-4 發光層配製 33 3.3-5 發光層塗佈 33 3.3-6 電洞注入層 34 3.3-7 電極蒸鍍 34 3.4 量測儀器 34 3.4-1 掃描式電子顯微鏡 34 3.4-2 光激發光光譜儀 35 3.4-3 輝度量測系統 35 參考文獻 44 第四章 量測分析與結果討論 45 4.1 白光有機發光二極體基本特性量測 45 4.1-1 白光調配 45 4.1-2 氧化鋅薄膜成長腔壓對元件之電性影響 46 4.1-3 氧化鋅薄膜成長腔壓對元件之發光亮度影響 46 4.2-1 氧化鋅薄膜成長腔壓對元件之發光效率影響 47 4.2-2 氧化鋅薄膜成長腔壓與發光層的特性探討 47 4.2-3 氧化鋅薄膜厚度對元件之電性影響 49 4.2-4 氧化鋅薄膜厚度對元件之發光亮度影響 49 4.2-5 氧化鋅薄膜厚度對元件之發光效率影響 50 4.3 具奈米柱陣列結構之元件特性量測 50 4.3-1 不同週期奈米柱陣列表面型態 50 4.3-2 具不同週期奈米柱陣列元件之電性影響 51 4.3-3 具不同週期奈米柱陣列元件之發光亮度影響 51 4.3-4 具不同週期奈米柱陣列元件之發光效率影響 52 參考文獻 64 第五章 結論 65

    第一章
    [1]Y. H. Kim, K. W. Cheah and W. Y. Kim, “High efficient white organic light-emitting diodes with single emissive layer using phosphorescent red, green, and blue dopants,” Appl. Phys. Lett., vol. 103, pp. 053307-1-053307-4, 2013.
    [2]T. Sudyoadsuk, P. Moonsin, N. Prachumrak, S. Namuangruk, S. Jungsuttiwong, T. Keawin and V. Promarak, “Carbazole dendrimers containing oligoarylfluorene cores as solution-processed hole-transporting non-doped emitters for efficient pure red, green, blue and white organic light-emitting diodes,” Polym. Chem., vol. 5, pp. 3982-3993, 2014.
    [3]H. Y. Chu, J. I. Lee, L. M. Do, T. Zyung, B. J. Jung, H. K. Shim and J. Jang, “Organic white light emitting devices with an RGB stacked multilayer structure,” Mol. Cryst. Liq. Cryst., vol. 405, pp. 119-125, 2003.
    [4]D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson and C. Zhou, “Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes,” Nano Lett., vol. 6, pp. 1880-1886, 2006.
    [5]B. O. Dabbousi, J. R. Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen and M. G. Bawendi, “(CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem., vol. 101, pp. 9463-9475, 2006.
    [6]T. K. Hatwar, J. P. Spindler, and S. A. V. Slyke, Proceedings of SID'06, 1964, 2006.
    [7]K. H. Lee, C. Y. Han, H. D. Kang, H. Ko, C. Lee, J. Lee, N. Myoung, S. Y. Yim and H. Yang, “Highly efficient, color-reproducible full-color electroluminescent devices based on red/green/blue quantum dot-mixed multilayer,” ACS., vol. 9, pp. 10941-10949, 2015.
    [8]Y. F. Liew, H. Aziz, N. X. Hu, H. S. O. Chan, and Z. Popovic, “Investigation of the sites of dark spots in organic light-emitting devices,” Appl. Phy. Lett., vol. 77, pp. 2650-2652, 2000.
    [9]H. D. Li, C. S. Hsu, F. M. Zhan and Y. C. Chao, “Efficiency enhancement in polymer light-emitting diodes via embedded indium-tin-oxide nanorods,” ACS Appl. Mater. Interfaces., vol. 7, pp. 7462-7465, 2015.
    [10]J. Cui, A. Wang, N. L. Edleman, J. Ni, P. Lee, N. R. Armstrong and T. J. Marks, “Indium tin oxide alternatives-high work function transparent conducting oxides as anodes for organic light-emitting diodes,” Adv. Mater., vol. 13, pp. 1476-1480, 2001.

    第二章
    [1]T. Ishida, H. Kobayashi and Y. Nakato, “Structures and properties of electron-beam-evaporated Indium tin oxide films as studied by x-ray photoelectron spectroscopy and work-function measurements,” J. Appl. Phys., vol. 73, pp. 4344-4350, 1993.
    [2]C. Shen, I. G. Hill and A. Kahn, “Role of electrode contamination in electron injection at Mg:Ag/ Alq3 interfaces,” Adv. Mater., vol. 11, pp. 1523-1527, 1999.
    [3]D. R. Baigent, R. N. Marks, N. C. Greenham, R. H. Friend, S. C. Moratti and A. B. Holmes, “Conjugated polymer light‐emitting diodes on silicon substrates,” Appl. Phys. Lett., vol. 65, pp. 2636-2638 (1994).
    [4]T. Miyashita, S. Naka, H. Okada and H. Onnagawa, “Dual drive and Emission Panel,” Jpn. J. Appl. Phys., vol. 44, pp. 3682-3685, 2005.
    [5]H. J. Bolink, E. Coronado, D. Repetto, M. Sessolo, E. M. Barea, J. Bisquert, G. Garcia-Belmonte, J. Prochazka and L. Kavan, “Inverted solution processable OLEDs using a metal oxideas an electron injection contact,” Adv. Funct. Mater., vol. 6999, pp. 69992X-1-11, 2015.
    [6]H. Lee, I. Park, J. Kwak, D. Y. Yoon and C. Lee, “Improvement of electron injection in inverted bottom-emission blue phosphorescent organic light emitting diodes using zinc oxide nanoparticles,” Appl. Phys. Lett., vol. 96, pp. 153306-1-153306-3, 2010.
    [7]M. A. Lambert and P. Mark, “Current injection in solids,” New York: Academic, 1970.
    [8]P. Kathirgamanathan, L. M. Bushby, M. Kumaraverl, S. Ravichandran and S. Surendrakumar, “Electroluminescent organic and quantum dot leds:the state of the art,” J. Display Technol., vol. 11, pp. 480-493, 2015.
    [9]Y. Shirasaki, G. J. Supran, M. G. Bawendi and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies,” Nature Photon., vol. 7, pp. 13-23, 2013.
    [10]H. Kim, D. Kim, C. Lee and J. Kim, “Laser interference lithography using spray/spin photoresist development method for consistent periodic nanostructures,” Curr. Appl. Phys., vol. 14, pp. 209-214, 2014.

    第三章
    [1]C. Klingshirn, “ZnO: material, physics and applications,” ChemPhysChem, vol. 8, pp. 782-803, 2007.
    [2]J. Y. Park and R. C. Advincula, “Tunable electroluminescence properties in CdSe/PVK guest-host based light-emitting devices,” Phys. Chem. Chem. Phys., vol.16, pp.8589-8593, 2014.

    第四章
    [1]K. Qasim, J. Chen, F. Xu, J. Wu, Z. Li, W. Lei, Y. Cui and J. Xia, “Large-area quantum-dot light emitting diode arrays with ZnO nanoparticles as electron transport/injection layer,” Sci. Adv. Mater., vol. 6, pp. 1-7, 2014.
    [2]D. H. Kim, J. Y. Kim, D. Y. Kim, J. H. Han, K. C. Choi, “Solution-based nanostructure to reduce waveguide and surface plasmon losses in organic light-emitting diodes, ” Org. Electron., vol. 15, pp. 3183-3190, 2014.

    無法下載圖示 校內:2022-07-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE