簡易檢索 / 詳目顯示

研究生: 林莉娟
Lin, Li-Jyuan
論文名稱: 不同形貌的溴化銫鉛鈣鈦礦微共振腔之雷射特性
Laser Characteristics of Cesium Lead Bromide Perovskite Microcavities with Various Morphologies
指導教授: 徐旭政
Hsu, Hsu-Cheng
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 70
中文關鍵詞: 溴化銫鉛鈣鈦礦微米共振腔雷射耳語迴廊模態偏振
外文關鍵詞: CsPbBr3 perovskite, microstructures, laser, whispering gallery mode resonator, polarization
相關次數: 點閱:198下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,因為全無機金屬鹵化物鈣鈦礦具有穩定及低成本的優點,因此在光電元件應用中成為相當有前景的材料。其中不同形狀的雷射微共振腔已經被發表,然而,卻很少深入研究不同形狀共振腔之間的雷射表現,因此本論文利用化學氣相沉積法,並藉由控制製程溫度及壓力,成長三種形狀的溴化銫鉛微米結構。
    由X光繞射(XRD)分析及時間解析光致發光(TRPL)光譜,得以證明我們的微米結構具有高結晶品質,此外,方形微米盤、直角三角形截面的的微米柱及微米圓台在室溫下可以達成雷射。另外,透過晶體的雷射放光圖片以及模態間距和路徑長倒數的關係,我們得知可能的共振模態如下,方形微米盤及微米圓台為耳語迴廊模態(WGM),而微米柱為類耳語迴廊模態(WGM-like),其中,方形微米盤具有最好的雷射表現,其擁有高於18000的品質因子(Q-factor),除此之外,雷射閥值與方形微米盤邊長的關係也在本研究中討論,最後,我們也探討了微米柱雷射放光的偏振特性。

    In recent years, all-inorganic metal halide perovskites are emerging as one of the most promising materials for application of the photonic devices due to their robustness and low cost. For microcavity laser application, lasing actions from different shapes of such materials were reported. However, relatively few in-depth comprehensive studies on the lasing properties of various-shaped microcavities were studied so far. Herein, three types of chemical vapor deposition (CVD)-grown CsPbBr3 microstructures can be fabricated by controlling the growth temperature and pressure. By x-ray diffraction and time-resolved-photoluminescence results, we confirmed that our microcrystals own high crystalline quality. Moreover, the lasing action from single square microplatelet, triangular microrod, and circular truncated cone could be achieved at room temperature. Then we identified the possible resonator mode by the lasing images and the relation of between the mode spacing and the inverse of a round trip. We found the whispering gallery mode (WGM) oscillation in square microplatelets and circular truncated cones and a WGM-like oscillation in microrods. The best lasing performance with Q-factor of more than 18000 can be observed from the square microplatelets. Furthermore, the relationship between the lasing threshold and the edge length of the square microplatelets was investigated. Finally, in the case of microrods, the polarization characteristics of the lasing emission were intensively addressed.

    摘要 I Abstract II 致謝 III Contents IV List of Tables VI List of Figures VII Chapter1 Introduction 1 1-1 Preface 1 1-2 Motivation 8 Chapter2 Background Theories 9 2-1 Characteristics of Perovskites 9 2-2-1 Structural Properties 9 2-2-2 Optical Properties 11 2-2-2-1 Absorption and Photoluminescence properties 11 2-2-2-2 Lasing behaviors 12 2-2 Photoluminescence 13 2-3 Resonator Mode Lasing 14 2-4 Polarization of Lasing Mode 18 Chapter3 Experiment Process and Measurement 20 3-1 Synthesis of Perovskite in Various Microcavities 20 3-2 Sample Analysis 22 3-2-1 Field Emission Scanning Electron Microscope (FESEM) 22 3-2-2 X-Ray Diffraction (XRD) 23 3-3 Optical Measurement 24 3-3-1 Photoluminescence 24 3-3-2 Optical Absorption 26 3-3-3 Time-Resolved Photoluminescence 27 3-3-4 Polarization Measurement 28 Chapter4 Experiment Results and Discussions 30 4-1 Morphology and Structure Analysis 30 4-1-1 SEM and Optical Images 30 4-1-2 XRD Analysis 32 4-2 Photoluminescence and Absorption 35 4-3 Time-Resolved Photoluminescence 39 4-4 Lasing Action 40 4-3-1 Square Microplatelet 40 4-3-1-1 Size-dependent Lasing Threshold 44 4-3-1-2 Resonator Mode 46 4-3-1-3 Lasing Stability 48 4-3-2 Other Morphological Features of Cavity 49 4-3-2-1 Microrod 49 4-3-2-2 Circular Truncated Cone 54 4-5 Comparison in Various Morphologies 58 4-6 Polarization of Photoluminescence in Microrods 60 4-6-1 Size-dependent DOP 62 Chapter5 Conclusion and Future Work 65 5-1 Conclusion 65 5-2 Future Work 66 Reference 67

    1 B. E. Hardin, H. J. Snaith, and M. D. McGehee, Nature Photonics 6 (3), 162-169 (2012).
    2 G. Li, R. Zhu, and Y. Yang, Nature Photonics 6 (3), 153-161 (2012).
    3 I. J. Kramer and E. H. Sargent, Chemical Reviews 114 (1), 863-882 (2014).
    4 Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, and R. H. Friend, Nature Nanotechnology 9 (9), 687-692 (2014).
    5 O. A. Jaramillo-Quintero, R. S. Sanchez, M. Rincon, and I. Mora-Sero, Journal of Physical Chemistry Letters 6 (10), 1883-1890 (2015).
    6 H. Deng, D. D. Dong, K. K. Qiao, L. L. Bu, B. Li, D. Yang, H. E. Wang, Y. B. Cheng, Z. X. Zhao, J. Tanga, and H. S. Song, Nanoscale 7 (9), 4163-4170 (2015).
    7 Q. Zhang, S. T. Ha, X. F. Liu, T. C. Sum, and Q. H. Xiong, Nano Letters 14 (10), 5995-6001 (2014).
    8 H. M. Zhu, Y. P. Fu, F. Meng, X. X. Wu, Z. Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, Nature Materials 14 (6), 636-U115 (2015).
    9 H. L. Wang, R. Haroldson, B. Balachandran, A. Zakhidov, S. Sohal, J. Y. Chan, A. Zakhidov, and W. Hu, Acs Nano 10 (12), 10921-10928 (2016).
    10 S. De Wolf, J. Holovsky, S. J. Moon, P. Loper, B. Niesen, M. Ledinsky, F. J. Haug, J. H. Yum, and C. Ballif, Journal of Physical Chemistry Letters 5 (6), 1035-1039 (2014).
    11 S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, Science 342 (6156), 341-344 (2013).
    12 Q. F. Dong, Y. J. Fang, Y. C. Shao, P. Mulligan, J. Qiu, L. Cao, and J. S. Huang, Science 347 (6225), 967-970 (2015).
    13 T. Leijtens, S. D. Stranks, G. E. Eperon, R. Lindblad, E. M. J. Johansson, I. J. McPherson, H. Rensmo, J. M. Ball, M. M. Lee, and H. J. Snaith, Acs Nano 8 (7), 7147-7155 (2014).
    14 S. D. Stranks, V. M. Burlakov, T. Leijtens, J. M. Ball, A. Goriely, and H. J. Snaith, Physical Review Applied 2 (3), 8 (2014).
    15 D. C. Look, Materials Science and Engineering B-Solid State Materials for Advanced Technology 80 (1-3), 383-387 (2001).
    16 S. Chu, G. P. Wang, W. H. Zhou, Y. Q. Lin, L. Chernyak, J. Z. Zhao, J. Y. Kong, L. Li, J. J. Ren, and J. L. Liu, Nature Nanotechnology 6 (8), 506-510 (2011).
    17 J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. D. Yang, and R. J. Saykally, Nature Materials 1 (2), 106-110 (2002).
    18 U. K. Mishra, P. Parikh, and Y. F. Wu, Proceedings of the IEEE 90 (6), 1022-1031 (2002).
    19 R. W. Meulenberg, J. R. I. Lee, A. Wolcott, J. Z. Zhang, L. J. Terminello, and T. van Buuren, Acs Nano 3 (2), 325-330 (2009).
    20 K. Sato, T. Asahi, M. Hanafusa, A. Noda, A. Arakawa, M. Uchida, O. Oda, Y. Yamada, and T. Taguchi, Physica Status Solidi a-Applied Research 180 (1), 267-274 (2000).
    21 Q. Zhang, R. Su, X. F. Liu, J. Xing, T. C. Sum, and Q. H. Xiong, Advanced Functional Materials 26 (34), 6238-6245 (2016).
    22 A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Journal of the American Chemical Society 131 (17), 6050-6051 (2009).
    23 E. H. Jung, N. J. Jeon, E. Y. Park, C. S. Moon, T. J. Shin, T. Y. Yang, J. H. Noh, and J. Seo, Nature 567 (7749), 511-515 (2019).
    24 Z. Z. Xu, Q. Liao, Q. Shi, H. L. Zhang, J. N. Yao, and H. B. Fu, Advanced Materials 24 (35), OP216-OP220 (2012).
    25 O. D. Miller, E. Yablonovitch, and S. R. Kurtz, Ieee Journal of Photovoltaics 2 (3), 303-311 (2012).
    26 Y. C. Ling, Z. Yuan, Y. Tian, X. Wang, J. C. Wang, Y. Xin, K. Hanson, B. W. Ma, and H. W. Gao, Advanced Materials 28 (2), 305-311 (2016).
    27 L. T. Dou, Y. Yang, J. B. You, Z. R. Hong, W. H. Chang, G. Li, and Y. Yang, Nature Communications 5, 6 (2014).
    28 G. C. Xing, N. Mathews, S. S. Lim, N. Yantara, X. F. Liu, D. Sabba, M. Gratzel, S. Mhaisalkar, and T. C. Sum, Nature Materials 13 (5), 476-480 (2014).
    29 Q. Liao, K. Hu, H. H. Zhang, X. D. Wang, J. N. Yao, and H. B. Fu, Advanced Materials 27 (22), 3405-3410 (2015).
    30 J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. H. Xiong, Nano Letters 15 (7), 4571-4577 (2015).
    31 A. Waleed and Z. Y. Fan, Science Bulletin 62 (9), 645-647 (2017).
    32 Y. P. Fu, H. M. Zhu, A. W. Schrader, D. Liang, Q. Ding, P. Joshi, L. Hwang, X. Y. Zhu, and S. Jin, Nano Letters 16 (2), 1000-1008 (2016).
    33 Q. Zhang, R. Su, W. N. Du, X. F. Liu, L. Y. Zhao, S. T. Ha, and Q. H. Xiong, Small Methods 1 (9), 12 (2017).
    34 J. Q. Li, S. G. R. Bade, X. Shan, and Z. B. Yu, Advanced Materials 27 (35), 5196-5202 (2015).
    35 S. W. Eaton, M. L. Lai, N. A. Gibson, A. B. Wong, L. T. Dou, J. Ma, L. W. Wang, S. R. Leone, and P. D. Yang, Proceedings of the National Academy of Sciences of the United States of America 113 (8), 1993-1998 (2016).
    36 H. F. Yuan, E. Debroye, K. Janssen, H. Naiki, C. Steuwe, G. Lu, M. Moris, E. Orgiu, H. Uji-i, F. De Schryver, P. Samori, J. Hofkens, and M. Roeffaers, Journal of Physical Chemistry Letters 7 (3), 561-566 (2016).
    37 J. B. You, L. Meng, T. B. Song, T. F. Guo, Y. Yang, W. H. Chang, Z. R. Hong, H. J. Chen, H. P. Zhou, Q. Chen, Y. S. Liu, N. De Marco, and Y. Yang, Nature Nanotechnology 11 (1), 75-81 (2016).
    38 H. Zhou, S. P. Yuan, X. X. Wang, T. Xu, X. Wang, H. L. Li, W. H. Zheng, P. Fang, Y. Y. Li, L. T. Sun, and A. L. Pan, Acs Nano 11 (2), 1189-1195 (2017).
    39 K. Park, J. W. Lee, J. D. Kim, N. S. Han, D. M. Jang, S. Jeong, J. Park, and J. K. Song, Journal of Physical Chemistry Letters 7 (18), 3703-3710 (2016).
    40 W. N. Du, S. Zhang, J. Shi, J. Chen, Z. Y. Wu, Y. Mi, Z. Liu, Y. Z. Li, X. Y. Sui, R. Wang, X. H. Qiu, T. Wu, Y. F. Xiao, Q. Zhang, and X. F. Liu, Acs Photonics 5 (5), 2051-2059 (2018).
    41 X. X. Wang, H. Zhou, S. P. Yuan, W. H. Zheng, Y. Jiang, X. J. Zhuang, H. J. Liu, Q. L. Zhang, X. L. Zhu, X. Wang, and A. L. Pan, Nano Research 10 (10), 3385-3395 (2017).
    42 D. Vanmaekelbergh and L. K. van Vugt, Nanoscale 3 (7), 2783-2800 (2011).
    43 Z. Z. Liu, J. Yang, J. Du, Z. P. Hu, T. C. Shi, Z. Y. Zhang, Y. Q. Liu, X. S. Tang, Y. X. Leng, and R. X. Li, Acs Nano 12 (6), 5923-5931 (2018).
    44 Y. Gao, L. Y. Zhao, Q. Y. Shang, Y. G. Zhong, Z. Liu, J. Chen, Z. P. Zhang, J. Shi, W. N. Du, Y. F. Zhang, S. L. Chen, P. Gao, X. F. Liu, X. N. Wang, and Q. Zhang, Advanced Materials 30 (31), 9 (2018).
    45 R. Gustav, Annalen der Physik 124, 551-573 (1839).
    46 M. A. Green, A. Ho-Baillie, and H. J. Snaith, Nature Photonics 8 (7), 506-514 (2014).
    47 W. G. Kong, Z. Y. Ye, Z. Qi, B. P. Zhang, M. Wang, A. Rahimi-Iman, and H. Z. Wu, Physical Chemistry Chemical Physics 17 (25), 16405-16411 (2015).
    48 M. Z. Zhang, Z. P. Zheng, Q. Y. Fu, Z. Chen, J. L. He, S. Zhang, L. Yan, Y. X. Hu, and W. Luo, Crystengcomm 19 (45), 6797-6803 (2017).
    49 S. Hirotsu, J. Harada, M. Iizumi, and K. Gesi, Journal of the Physical Society of Japan 37 (5), 1393-1398 (1974).
    50 V. M. Goldschmidt., Naturwissenschaften 14 (21), 477-485 (1926).
    51 H. Wang and D. H. Kim, Chemical Society Reviews 46 (17), 5204-5236 (2017).
    52 G. Kieslich, S. J. Sun, and A. K. Cheetham, Chemical Science 5 (12), 4712-4715 (2014).
    53 F. Bertolotti, L. Protesescu, M. V. Kovalenko, S. Yakunin, A. Cervellino, S. J. L. Billinge, M. W. Terban, J. S. Pedersen, N. Masciocchi, and A. Guagliardi, Acs Nano 11 (4), 3819-3831 (2017).
    54 Z. Li, M. J. Yang, J. S. Park, S. H. Wei, J. J. Berry, and K. Zhu, Chemistry of Materials 28 (1), 284-292 (2016).
    55 L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, Nano Letters 15 (6), 3692-3696 (2015).
    56 G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent, and M. V. Kovalenko, Nano Letters 15 (8), 5635-5640 (2015).
    57 Q. A. Akkerman, V. D'Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato, and L. Manna, Journal of the American Chemical Society 137 (32), 10276-10281 (2015).
    58 I. Lignos, S. Stavrakis, G. Nedelcu, L. Protesescu, A. J. Demello, and M. V. Kovalenko, Nano Letters 16 (3), 1869-1877 (2016).
    59 C. Wehrenfennig, M. Z. Liu, H. J. Snaith, M. B. Johnston, and L. M. Herz, Journal of Physical Chemistry Letters 5 (8), 1300-1306 (2014).
    60 M. Zhang, H. Yu, M. Q. Lyu, Q. Wang, J. H. Yun, and L. Z. Wang, Chemical Communications 50 (79), 11727-11730 (2014).
    61 B. Tang, H. X. Dong, L. X. Sun, W. H. Zheng, Q. Wang, F. F. Sun, X. W. Jiang, A. L. Pan, and L. Zhang, Acs Nano 11 (11), 10681-10688 (2017).
    62 B. E. Zhou, H. X. Dong, M. M. Jiang, W. H. Zheng, L. X. Sun, B. B. Zhao, B. Tang, A. L. Pan, and L. Zhang, Journal of Materials Chemistry C 6 (43), 11740-11748 (2018).
    63 X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, Nature 421 (6920), 241-245 (2003).
    64 X. D. Wang, Q. Liao, X. M. Lu, H. Li, Z. Z. Xu, and H. B. Fu, Scientific Reports 4, 8 (2014).
    65 S. L. Chuang and C. S. Chang, Physical Review B 54 (4), 2491-2504 (1996).
    66 G. Jacopin, L. Rigutti, A. D. L. Bugallo, F. H. Julien, C. Baratto, E. Comini, M. Ferroni, and M. Tchernycheva, Nanoscale Research Letters 6, 6 (2011).
    67 I. Gozhyk, G. Clavier, R. Meallet-Renault, M. Dvorko, R. Pansu, J. F. Audibert, A. Brosseau, C. Lafargue, V. Tsvirkun, S. Lozenko, S. Forget, S. Chenais, C. Ulysse, J. Zyss, and M. Lebental, Physical Review A 86 (4), 11 (2012).
    68 J. Wiersig and M. Hentschel, Physical Review Letters 100 (3), 4 (2008).
    69 E. Hecht, Optics, 4 ed. (Pearson Education, 2002), pp.348-351.
    70 D. R. James, Y. S. Liu, P. Demayo, and W. R. Ware, Chemical Physics Letters 120 (4-5), 460-465 (1985).
    71 N. S. Han, H. S. Shim, S. Lee, S. M. Park, M. Y. Choi, and J. K. Song, Physical Chemistry Chemical Physics 14 (30), 10556-10563 (2012).
    72 S. G. Lan, W. C. Li, S. Wang, J. Z. Li, J. Wang, H. Z. Wang, H. M. Luo, and D. H. Li, Advanced Optical Materials 7 (2), 8 (2019).
    73 Z. F. Shi, L. Z. Lei, Y. Li, F. Zhang, Z. Z. Ma, X. J. Li, D. Wu, T. T. Xu, Y. T. Tian, B. L. Zhang, Z. G. Yao, and G. T. Du, Acs Applied Materials & Interfaces 10 (38), 32289-32297 (2018).
    74 J. Chen, Y. P. Fu, L. Samad, L. N. Dang, Y. Z. Zhao, S. H. Shen, L. J. Guo, and S. Jin, Nano Letters 17 (1), 460-466 (2017).
    75 L. Xu, J. Li, T. Fang, Y. Zhao, S. Yuan, Y. Dong, and J. Song, Nanoscale Advances 1, 980-988 (2019).
    76 Y. L. Wang, X. Guan, D. H. Li, H. C. Cheng, X. D. Duan, Z. Y. Lin, and X. F. Duan, Nano Research 10 (4), 1223-1233 (2017).
    77 G. Q. Tong, H. Li, D. T. Li, Z. F. Zhu, E. Z. Xu, G. P. Li, L. W. Yu, J. Xu, and Y. Jiang, Small 14 (7), 8 (2018).
    78 T. Schmidt, K. Lischka, and W. Zulehner, Physical Review B 45 (16), 8989-8994 (1992).
    79 H. P. He, Q. Q. Yu, H. Li, J. Li, J. J. Si, Y. Z. Jin, N. N. Wang, J. P. Wang, J. W. He, X. K. Wang, Y. Zhang, and Z. Z. Ye, Nature Communications 7, 7 (2016).
    80 G. W. Guglietta, K. R. Choudhury, J. V. Caspar, and J. B. Baxter, Applied Physics Letters 104 (25), 5 (2014).
    81 V. K. Ravi, A. Swarnkar, R. Chakraborty, and A. Nag, Nanotechnology 27 (32), 8 (2016).
    82 D. J. Gargas, M. C. Moore, A. Ni, S. W. Chang, Z. Y. Zhang, S. L. Chuang, and P. D. Yang, Acs Nano 4 (6), 3270-3276 (2010).
    83 X. F. Liu, S. T. Ha, Q. Zhang, M. de la Mata, C. Magen, J. Arbiol, T. C. Sum, and Q. H. Xiong, Acs Nano 9 (1), 687-695 (2015).
    84 J.-M. Liu, Principles of Photonics. (Cambridge Univ Press, 2016).
    85 A. K. Bhowmik, Applied Optics 39 (18), 3071-3075 (2000).
    86 Y. Z. Huang, Z. Pan, and R. H. Wu, Journal of Applied Physics 79 (8), 3827-3830 (1996).
    87 B. Tang, L. X. Sun, W. H. Zheng, H. X. Dong, B. B. Zhao, Q. Q. Si, X. X. Wang, X. W. Jiang, A. L. Pan, and L. Zhang, Advanced Optical Materials 6 (20), 9 (2018).
    88 H. Y. Chen, Y. C. Yang, H. W. Lin, S. C. Chang, and S. Gwo, Optics Express 16 (17), 13465-13475 (2008).
    89 H. Y. Li, S. Ruhle, R. Khedoe, A. F. Koenderink, and D. Vanmaekelbergh, Nano Letters 9 (10), 3515-3520 (2009).

    下載圖示 校內:2022-07-18公開
    校外:2022-07-18公開
    QR CODE