| 研究生: |
林宛萱 Lin, Wan-Hsuan |
|---|---|
| 論文名稱: |
求解中繼站具有兩個轉運選擇之多階層收送貨問題 Solving a multi-echelon pickup and delivery problem considering hub with two transfer options |
| 指導教授: |
張秀雲
Chang, Shiow-Yun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 收送貨問題 、多階層 、整數規劃 、適應性大規模鄰域搜尋演算法 |
| 外文關鍵詞: | Pickup and Delivery problem, multi-echelon, ALNS |
| 相關次數: | 點閱:56 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
包裹運送為收送貨問題的廣泛應用之一,其中,典型的收送貨問題假設運輸需求僅發生在單一區域內。然而,真實情況下,包裹的運送很多時候是需要橫跨多個區域,需要搭配能夠在區域間行駛的車輛來運送,以完成包裹的整個運送程序,因此,有愈來愈多文獻考慮多區域的收送貨相關問題。但是,在這些文獻中,區域與區域間的可用路徑只有車輛場站(或轉運設施)間的直接路徑。另外,在本研究參考的黑貓宅急便配送架構中,由集配車送回營業所的包裹都必須先經由聯繫車送往轉運中心,再經由轉運車轉運,其中,包裹需要經過多次的轉移後,才能交付給顧客。本研究主觀地認為,若包裹送回營業所後,除了透過送往轉運中心並由轉運車轉運的方案外,也提供營業所間能經由聯繫車直接運送的方案,這會讓包裹的配送變得更加有效率。因此,本研究考慮一個在營業所中,有兩個轉運方案可供選擇的多階層收送貨問題,並為此問題建構一個混合整數規劃模型。另外,由於真實世界中有大量的包裹運輸需求,數學模型可能無法有效地解決,因此,本研究也設計一個ALNS演算法來解決較大規模的問題。
在求解結果的部分,本研究設計的ALNS在小規模例題中大多能較有效率地找出與數學模型相同或接近的解。另外,在求解相同包裹數設計的小規模例題時,模型需要花費的求解時間會有明顯的變化,然而,ALNS演算法則是能以差不多的時間求解完成。接著,在大規模的例題中,本研究的ALNS演算法也能在合理的時間內找出一個可行的初始解並予以改善。然而,此ALNS演算法的求解時間會隨著包裹數增加而暴增,在每次迭代中,修復運算子所需花費的時間會明顯增加許多,使得演算法在合理時間內無法達成指定的迭代次數。
Package delivery is one of the extensive applications of the pickup-and-delivery problem (PDP). This study takes the transportation structure of Yamato Transport Co., Ltd. as a reference. However, for inter-region package that the pickup and delivery customers are close, this study offer an option to directly transport it to Hub-delivery, after the package arriving at Hub-pick without traveling through pick and delivery transfer stations. Intuitively, if available medium-sized lorries can directly transport inter-region packages to the Hub-delivery after they arrive at Hub-pick, it will make the package delivery more efficient and cut costs. Therefore, this study considers a multi-echelon PDP with two transfer options at the Hub-pick and formulates a mix-integer programming model to deal with it. Besides, this study also develops an adaptive large neighborhood search (ALNS) algorithm to solve large-scale problems efficiently. In the numerical experiment, the result shows the performance of the ALNS algorithm is nice. Also, we demonstrate that allowing the new transfer option could indeed save cost.
嘉里大榮物流股份有限公司-107年度年報。https://www.kerrytj.com/Upload/DownloadImages/2019073013220938.pdf
中華郵政(股)公司-107年郵政年報。https://emap1.post.gov.tw/post/internet/Group/index.jsp?ID=10106
統一超商股份有限公司- 2018年度報告書。
https://www.ir-cloud.com/taiwan/2912/irwebsite_c/index.php?mod=annual
全家便利商店股份有限公司-最新消息。https://www.family.com.tw/Web_EnterPrise/page/NewsContent.aspx?ID=620
李金品(2014)。宅配物流架構與服務‐宅急便服務特性與發展現況。http://www.mdm.ocu.edu.tw/userfile/file/%E7%B0%A1%E5%A0%B1/%E5%AE%85%E9%85%8D%E7%89%A9%E6%B5%81%E6%9E%B6%E6%A7%8B%E8%88%87%E6%9C%8D%E5%8B%9902.pdf
林國顯(2010)。行車成本調查分析與交通建設計畫經濟效益評估之推廣應用。
Ahkamiraad, A., & Wang, Y. (2018). Capacitated and multiple cross-docked vehicle routing problem with pickup, delivery, and time windows. Computers & Industrial Engineering, 119, 76-84.
Ahmadizar, F., Zeynivand, M., & Arkat, J. (2015). Two-level vehicle routing with cross-docking in a three-echelon supply chain: A genetic algorithm approach. Applied Mathematical Modelling, 39(22), 7065-7081.
Belgin, O., Karaoglan, I., & Altiparmak, F. (2018). Two-echelon vehicle routing problem with simultaneous pickup and delivery: Mathematical model and heuristic approach. Computers & Industrial Engineering, 115, 1-16.
Chebbi, O., & Fatnassi, E. (2017). The Multi Depot One-to-One Pickup and Delivery
Problem with Distance Constraints: Real World Application and Heuristic Solution Approach. Paper presented at the IFIP International Conference on Computer Information Systems and Industrial Management.
Cortés, C. E., Matamala, M., & Contardo, C. (2010). The pickup and delivery problem with transfers: Formulation and a branch-and-cut solution method. European Journal of Operational Research, 200(3), 711-724.
Crainic, T. G., Ricciardi, N., & Storchi, G. (2009). Models for evaluating and planning city logistics systems. Transportation science, 43(4), 432-454.
Danloup, N., Allaoui, H., & Goncalves, G. (2018). A comparison of two meta-heuristics for the pickup and delivery problem with transshipment. Computers & Operations Research, 100, 155-171.
Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management science, 6(1), 80-91.
Detti, P., Papalini, F., & de Lara, G. Z. M. (2017). A multi-depot dial-a-ride problem with heterogeneous vehicles and compatibility constraints in healthcare. Omega, 70, 1-14.
Dragomir, A., & Doerner, K. (2019). Solution techniques for the inter-modal pickup and delivery problem in two regions. Computers & Operations Research, 104808.
Dragomir, A. G., Nicola, D., Soriano, A., & Gansterer, M. (2018). Multidepot pickup and delivery problems in multiple regions: a typology and integrated model. International Transactions in Operational Research, 25(2), 569-597.
Furtado, M. G. S., Munari, P., & Morabito, R. (2017). Pickup and delivery problem with time windows: a new compact two-index formulation. Operations Research Letters, 45(4), 334-341.
Gansterer, M., Hartl, R. F., & Salzmann, P. E. (2018). Exact solutions for the collaborative pickup and delivery problem. Central European journal of operations research, 26(2), 357-371.
Ghilas, V., Cordeau, J.-F., Demir, E., & Woensel, T. V. (2018). Branch-and-price for the pickup and delivery problem with time windows and scheduled lines. Transportation science, 52(5), 1191-1210.
Ghilas, V., Demir, E., & Van Woensel, T. (2016a). An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows and scheduled lines. Computers & Operations Research, 72, 12-30.
Ghilas, V., Demir, E., & Van Woensel, T. (2016b). The pickup and delivery problem with time windows and scheduled lines. INFOR: Information Systems and Operational Research, 54(2), 147-167.
Harbaoui Dridi, I., Ben Alaïa, E., Borne, P., & Bouchriha, H. (2019). Optimisation of the multi-depots pick-up and delivery problems with time windows and multi-vehicles using PSO algorithm. International Journal of Production Research, 1-14.
Li, X., Li, J., Aneja, Y., Guo, Z., & Tian, P. (2019). Integrated order allocation and order routing problem for e-order fulfillment. IISE Transactions, 1-23.
Naccache, S., Côté, J.-F., & Coelho, L. C. (2018). The multi-pickup and delivery problem with time windows. European Journal of Operational Research, 269(1), 353-362.
Parragh, S. N., Doerner, K. F., & Hartl, R. F. (2008). A survey on pickup and delivery models part ii: Transportation between pickup and delivery locations. Journal für Betriebswirtschaft, 58(2), 81-117.
Rais, A., Alvelos, F., & Carvalho, M. S. (2014). New mixed integer-programming model for the pickup-and-delivery problem with transshipment. European Journal of Operational Research, 235(3), 530-539.
Ropke, S., & Pisinger, D. (2006). An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. Transportation science, 40(4), 455-472.
Savelsbergh, M. W., & Sol, M. (1995). The general pickup and delivery problem. Transportation science, 29(1), 17-29.
Soriano, A., Gansterer, M., & Hartl, R. F. (2018). The two-region multi-depot pickup and delivery problem. OR Spectrum, 40(4), 1077-1108.
Veenstra, M., Roodbergen, K. J., Vis, I. F., & Coelho, L. C. (2017). The pickup and delivery traveling salesman problem with handling costs. European Journal of Operational Research, 257(1), 118-132.
Wang, J., Jagannathan, A. K. R., Zuo, X., & Murray, C. C. (2017). Two-layer simulated annealing and tabu search heuristics for a vehicle routing problem with cross docks and split deliveries. Computers & Industrial Engineering, 112, 84-98.
Zhou, L., Baldacci, R., Vigo, D., & Wang, X. (2018). A multi-depot two-echelon vehicle routing problem with delivery options arising in the last mile distribution. European Journal of Operational Research, 265(2), 765-778
.