| 研究生: |
龍世豪 Lung, Shih-Hao |
|---|---|
| 論文名稱: |
不需量子產生及量測能力之輕量化半量子通訊協定 Lightweight Semi-quantum Communication Protocols Without Invoking Quantum Generation and Measurement |
| 指導教授: |
黃宗立
Hwang, Tzone-Lih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 32 |
| 中文關鍵詞: | 量子密碼學 、半量子通訊協定 、互換編碼法 |
| 外文關鍵詞: | Quantum cryptography, Semi-quantum cryptography, Swap encoding |
| 相關次數: | 點閱:81 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文試圖提升現行「半量子」環境下的金鑰分配協定下,一顆量子能攜帶的傳統資訊位元量,在半量子環境下包含「量子」與「古典」參與者,在量子設備上古典參與者會有所限制,只能擁有四種基本量子能力中的三種,使得半量子協議的表現幾乎比一般的量子協議來的遜色一些。本論文基於半量子環境下,定義了高效率的編碼方式(名為互換編碼法),基於此編碼法進而提出半量子金鑰分配協議,延伸其概念也提出了半量子秘密分享以及決定性安全半量子通訊協議。為了讓兩個「古典」參與者可以安全地分享金鑰或訊息,最後亦提出了在不信任第三方下的三方半量子金鑰分配協議,以及被控制的決定性安全半量子通訊協議,並且為了要提高量子協議的可行性,要求量子參與者僅能使用基態量子的相關操作。
This thesis attempts to increase the qubit efficiency in the semi-quantum environment and to enhance the practicality of semi-quantum protocols. The requirements of quantum users are restricted to only manipulating operations related to ground states of quanta. In this thesis, a new encoding method to improve qubit efficiency is proposed. Based on this encoding method, three protocols are proposed: the semi-quantum key distribution (SQKD), semi-quantum secret sharing (SQSS), and semi deterministic secure quantum communication (SDSQC) protocols. Additionally, this thesis also proposes a mediated LWSQKD protocol that allows two “classical” users with simple quantum capabilities to establish a shared session key under an untrusted third party (TP). To extend the concept of mediated LWSQKD protocol, a controlled SDSQC protocol is also proposed.
[1] Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. IEEE Proceedings 35th Ann. Symp. on Foundations of Comput. Sci. (1994)
[2] Buzˇek, V., Hillery, M.: Quantum copying: Beyond the no-cloning theorem. Phys. Rev. A 54(3), 1844 (1996)
[3] Deutsch, D.: Uncertainty in Quantum Measurements. Phys. Rev. Lett. 50(9), 631-636 (1983)
[4] Bennett, C.H., Brassard, G.: Quantum cryptography Public key distribution and coin tossing. IEEE Int. Conf. Comput. 1, 175-179 (1984)
[5] Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci. 560(1), 7-11 (2014)
[6] Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)
[7] Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050-2056 (1999)
[8] Ben-Or, M., Horodecki, M., Leung, D.W., Mayers, D., Oppenheim, J.: The universal composable security of quantum key distribution. TCC 2005: Theory of Cryptography 3378, 386-406 (2005)
[9] Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)
[10] Hwang, T., Lee, K.C.: EPR quantum key distribution protocols with potential 100% qubit efficiency. IET Inf. Security 1(1), 43–45 (2007)
[11] Gan, G.: Quantum key distribution scheme with high efficiency. Commun. Theor. Phys. 51(5), 820 (2009)
[12] Zhang, Z.J., Man, Z.X., Shi, S.H.: An efficient multiparty quantum key distribution scheme. Int. J. Quantum Inf. 3, 555-560 (2005)
[13] Shih, H.C., Lee, K.C., Hwang, T.: New efficient three-party quantum key distribution protocols. IEEE J. Sel. Top. Quantum Electron. 15, 1602–1606 (2009)
[14] Li, C., Song, H.S., Zhou, L., Wu, C.F.: A random quantum key distribution achieved by using Bell states. J. Opt. B Quantum and Semiclassical Opt. 5(2), 155 (2003)
[15] Gao, G.: Quantum key distribution by comparing Bell states. Opt. Commun. 281, 876–879 (2008)
[16] Song, D.: Secure key distribution by swapping quantum entanglement. Phys. Rev. A 69(3), 034301 (2004)
[17] Chen, P., Li, Y.S., Deng, F.G., Long, G.L.: Measuring-basis encrypted quantum key distribution with four-state systems. Commun. Theor. Phys. 47(1), 49-52 (2007)
[18] Hwang, T., Tsai, C.W., Chong, S.K.: Probabilistic quantum key distribution. Quantum Inf. & Comput. 11, 615-637 (2011)
[19] Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829-1834 (1999)
[20] Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)
[21] Li, Y.M., Zhang, K.S., Peng, K.C.: Multiparty secret sharing of quantum information based on entanglement swapping. Phys. Lett. A 324(5), 420-424 (2004)
[22] Zhang1, Z.J., Li, Y., Man, Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71(4), 044301 (2005)
[23] Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. IET Electron. Lett. 40(18), 1149-1150 (2004)
[24] Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283(6), 1192-1195 (2010)
[25] Shi, R.H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf. Process. 12(2), 921-932 (2013)
[26] Liu, B., Gao, F., Huang, W., Wen, Q.Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12(4), 1797-1805 (2013)
[27] Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math. Theor. 42(5), 055305 (2009)
[28] Hung, S.M., Hwang, S.L., Hwang, T., Kao, S.H.: Multiparty quantum private comparison with almost dishonest third parties for strangers. Quantum Inf. Process. 16, 36-47 (2016)
[29] Shi, R.H., Zhong, H.: Multiparty quantum secret sharing with the pure entangled two-photon states. Quantum Inf. Process. 11(1), 161-169 (2012)
[30] Yao, X.C., Wang, T.X., Xu, P., Lu, H., Pan, G.S., Bao, X.H., Peng, C.Z., Lu, C.Y., Chen, Y.A., Pan, J.W.: Observation of eight-photon entanglement. Nat. Photonics 6, 225-228 (2012)
[31] Wang, X.L., Chen, L.K., Li, W., Huang, H-L., Liu, C., Chen, C. et al.: Experimental ten-photon entanglement. Phys. Rev. Lett. 117, 210502 (2016)
[32] Julsgaard, B., Sherson, J., Cirac, J.I., Fiurášek, J., Polzik, S.E.: Experimental demonstration of quantum memory for light. Nat. 432, 482-486 (2004)
[33] Boyer, M., Kenigsberg, D., Mor, T.: Quantum Key Distribution with Classical Bob. Phys. Rev. Lett. 99, 140501 (2007)
[34] Boyer, M., Kenigsberg, D., Mor, T.: Quantum Key Distribution with Classical Bob. First Int. Conf. Quantum, Nano, Micro Technol. (2007)
[35] Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A 79, 032341 (2009)
[36] Nie Y.Y, Li, Y.H., Wang, Z.S.: Semi-quantum information splitting using GHZ-type states. Quantum Inf. Process. 12(1), 437-448 (2013)
[37] Zou, X., Qiu, D., Zhang, S., Mateus, P.: Semiquantum key distribution without invoking the classical party’s measurement capability. Quantum Inf. Process. 14, 2981-2996 (2015)
[38] Li, Q., Chan, W.H., Long, D.Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82, 022303 (2010)
[39] Wang, J., Zhang, S., Zhang, Q., Tang, C.J.: Semiquantum secret sharing using two-particle entangled state. Int. J. Quantum Inf. 10(5), 1250050 (2012)
[40] Yang, C.W., Hwang, T.: Efficient key construction on semi-quantum secret sharing protocols. Int. J. Quantum Inf. 11(5), 1350052 (2012)
[41] Shukla, C., Thapliyal, K.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16:295 (2017)
[42] Yu, K.F., Gu, J., Hwang, T.: Multi-party semi-quantum key distribution-convertible multi-party semi-quantum secret sharing. Quantum Inf. Process. 16:194 (2017)
[43] Liu, Z.R., Hwang, T.: Mediated semi-quantum key distribution without invoking quantum measurement. Annalen der Physik 530(4), 1700206 (2018)
[44] Liu, B., Gao, F., Wen, Q.Y.: Single-photon multiparty quantum cryptographic protocols with collective detection. IEEE J. Quantum Electron. 47(11), 1383-1390 (2011)
[45] Bennett, C.H., Brassard, G., Crepeau, C.: Generalized privacy amplification. IEEE Trans. on Inf. Theory 41(6), 1915- 1923 (1995)
[46] Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)
[47] Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comparing the efficiencies of different detect strategies in the ping-pong protocol. Sci. China Ser. G: Phys., Mech. Astron. 51(12), 1853-1860 (2008)
[48] Luo, Y.P., Lin, C.Y., Hwang, T.: Efficient quantum dialogue using single photons. Quantum Inf. Process. 13(11), 2451-2461 (2014)
[49] Deng, F.G., Zhou, P., Li, X.H., Li, C.Y., Zhou, H.Y.: Robustness of two-way quantum communication protocols against Trojan horse attack. arXiv:quant-ph/0508168 (2005)
[50] Cai, Q. Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351, 23-25 (2006)
[51] Yang, C.W., Hwang, T., Luo, Y.P.: Enhancement on “quantum blind signature based on two-state vector formalism”. Quantum Inf. Process. 12(1), 109-117 (2013)
[52] Tan, Y.G., Lu, H., Cai, Q.Y.: Comment on “Quantum Key Distribution with Classical Bob”. Phys. Rev. Lett. 102, 098901 (2009)
[53] Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)
[54] Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)
[55] Boyer, M., Kenigsberg, D., Mor, T.: Boyer, Kenigsberg, and Mor Reply:. Phys. Rev. Lett. 102, 098902 (2009)
[56] Krawec, W.O.: Mediated semiquantum key distribution. Phys. Rev. A 91, 032323 (2015)
校內:2023-08-27公開