| 研究生: |
尤應龍 Yu, Ying-Lung |
|---|---|
| 論文名稱: |
開發微型串聯彈性致動器於遠端操作機器人的精準力感知與控制 Design of a Miniature Series Elastic Actuator for Bilateral Teleoperations Requiring Accurate Torque Sensing and Control |
| 指導教授: |
藍兆杰
Lan, Chao-Chieh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 156 |
| 中文關鍵詞: | 串聯彈性致動器 、平面彈簧 、雙向控制 、主從控制 、阻抗控制器 |
| 外文關鍵詞: | Series elastic actuator, impedance control, elastic spring, torque and stiffness control, bilateral teleoperation, haptics feedback |
| 相關次數: | 點閱:87 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文開發一使用旋轉串聯彈性致動器進行雙向力回饋控制之遠端操作機器人。與剛性致動器相比,旋轉串聯彈性致動器可達到更精準的輸出扭矩及勁度控制,因此更適合應用於藉由真實或虛擬阻抗以安全進行人機互動之機器。現存之旋轉串聯彈性致動器大多體積龐大且不適用於多自由度之應用,為了發掘旋轉串聯彈性致動器之優勢於雙向力回饋控制,本文所提出之微型旋轉串聯彈性致動器設計在藉由平面彈簧最小化機構尺寸的同時,仍可達到精準之輸出扭矩及勁度控制,在阻抗控制實驗上之成果均較現存之旋轉串聯彈性致動器表現好。
本文之遠端操作機器人為基於旋轉串聯彈性致動器及串集式阻抗控制器上進行設計,因此本文針對此兩部分進行機構設計及分析,首先對撓性元件進行分析,設計出一同時達到順時針及逆時針旋轉方向勁度相同及變形範圍大之撓性元件,接著設計馬達驅動與感測電路及控制系統軟硬體架構,使旋轉串聯彈性致動器能夠結合嵌入式控制器以電腦進行控制。並建立旋轉串聯彈性致動器之模型,以串集式阻抗控制器進行控制,利用商用軟體MATLAB®中的Simulink®建立模擬模型,使本文能夠同時利用實驗及模擬方法驗證旋轉串聯彈性致動器阻抗控制性能。最後將此成果運用於遠端操作機器人中達成雙向力回饋控制,使之能夠與不同軟硬度之環境互動。
Compared with stiff actuators, series elastic actuators (SEAs) can render more accurate output torque and stiffness. Hence SEAs are suitable for robots that need to interact safely with human or properly with the actual or virtual environment. Many existing rotary SEAs are bulky and not suitable for multiple-degree-of-freedom (DoF) applications. To explore the merits of SEAs in bilateral teleoperations that often require multiple-DoF force feedback, this paper presents a miniature rotary SEA. By using a specifically designed planar spring, the size of the SEA can be minimized while the output torque and stiffness can still be accurately controlled. Dynamic modeling and impedance control experiments show that the torque and stiffness rendering results are better than those of existing SEAs. A master-slave robot system using the proposed SEA demonstrates that both stiff and soft remote environments can be virtually realized. We expect that this miniature SEA can serve as an alternative actuator for robotic teleoperations requiring accurate torque sensing and control.
[1] Katsura, Seiichiro, Kouhei Irie, and Kiyoshi Ohishi. "Wideband force control by position-acceleration integrated disturbance observer." IEEE Transactions on Industrial Electronics 55.4 (2008): 1699-1706.
[2] Calanca, Andrea, Riccardo Muradore, and Paolo Fiorini. "A review of algorithms for compliant control of stiff and fixed-compliance robots." IEEE/ASME Transactions on Mechatronics21.2 (2016): 613-624.
[3] Mehling, Josh S. Impedance control approaches for series elastic actuators. Diss. Rice University, 2015.
[4] Lagoda, Claude, et al. "Design of an electric series elastic actuated joint for robotic gait rehabilitation training." Biomedical Robotics and Biomechatronics (BioRob), 2010 3rd IEEE RAS and EMBS International Conference on. IEEE, 2010.
[5] Zhang, Ting, and He Helen Huang. "Lower-Back Robotic Exoskeleton." IEEE Robotics & Automation Magazine (2018).
[6] Carpino, Giorgio, et al. "A novel compact torsional spring for series elastic actuators for assistive wearable robots." Journal of Mechanical Design 134.12 (2012): 121002.
[7] Accoto, Dino, et al. "Design and characterization of a novel high-power series elastic actuator for a lower limb robotic orthosis." International Journal of Advanced Robotic Systems 10.10 (2013): 359.
[8] Cummings, Jonathan P., et al. "A compact, modular series elastic actuator." Journal of Mechanisms and Robotics 8.4 (2016): 041016.
[9] Choi, Wonje, et al. "Low stiffness design and hysteresis compensation torque control of SEA for active exercise rehabilitation robots." Autonomous Robots 41.5 (2017): 1221-1242.
[10] dos Santos, Wilian M., Glauco AP Caurin, and Adriano AG Siqueira. "Design and control of an active knee orthosis driven by a rotary series elastic actuator." Control Engineering Practice58 (2017): 307-318.
[11] Yoo, Sunkyum, et al. "Development of rotary hydro-elastic actuator with robust internal-loop-compensator-based torque control and cross-parallel connection spring." Mechatronics 43 (2017): 112-123.
[12] Irmscher, Cornelius, et al. "Design, optimisation and testing of a compact, inexpensive elastic element for series elastic actuators." Medical engineering & physics 52 (2018): 84-89.
[13] Lee, Chan, et al. "Generalization of Series Elastic Actuator configurations and dynamic behavior comparison." Actuators. Vol. 6. No. 3. Multidisciplinary Digital Publishing Institute, 2017.
[14] Kong, Kyoungchul, Joonbum Bae, and Masayoshi Tomizuka. "A compact rotary series elastic actuator for human assistive systems." IEEE/ASME transactions on mechatronics 17.2 (2012): 288-297.
[15] Paine, Nicholas, Sehoon Oh, and Luis Sentis. "Design and control considerations for high-performance series elastic actuators." IEEE/ASME Transactions on Mechatronics 19.3 (2014): 1080-1091.
[16] Lens, Thomas, and Oskar von Stryk. "Design and dynamics model of a lightweight series elastic tendon-driven robot arm." Robotics and Automation (ICRA), 2013 IEEE International Conference on. IEEE, 2013.
[17] Lee, Chan, and Sehoon Oh. "Configuration and performance analysis of a compact planetary geared Elastic Actuator." Industrial Electronics Society, IECON 2016-42nd Annual Conference of the IEEE. IEEE, 2016.
[18] Currie, Maria E., et al. "The role of visual and direct force feedback in robotics‐assisted mitral valve annuloplasty." The International Journal of Medical Robotics and Computer Assisted Surgery 13.3 (2017): e1787.
[19] Rebelo, Joao, et al. "Bilateral robot teleoperation: A wearable arm exoskeleton featuring an intuitive user interface." IEEE Robotics & Automation Magazine 21.4 (2014): 62-69.
[20] Gupta, Gourab Sen, et al. "Master–slave control of a teleoperated anthropomorphic robotic arm with gripping force sensing." IEEE Transactions on Instrumentation and Measurement 55.6 (2006): 2136-2145.
[21] Tobergte, Andreas, et al. "The sigma. 7 haptic interface for MiroSurge: A new bi-manual surgical console." Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on. IEEE, 2011.
[22] Arata, Jumpei, et al. "Haptic device using a newly developed redundant parallel mechanism." IEEE Transactions on robotics27.2 (2011): 201-214.
[23] Zareinia, Kourosh, et al. "Performance evaluation of haptic hand‐controllers in a robot‐assisted surgical system." The International Journal of Medical Robotics and Computer Assisted Surgery11.4 (2015): 486-501.
[24] Vulliez, Margot, Said Zeghloul, and Oussama Khatib. "Design strategy and issues of the Delthaptic, a new 6-DOF parallel haptic device." Mechanism and Machine Theory 128 (2018): 395-411.
[25] Abeywardena, Sajeeva, and Chao Chen. "Implementation and evaluation of a three-legged six-degrees-of-freedom parallel mechanism as an impedance-type haptic device." IEEE/ASME Transactions on Mechatronics 22.3 (2017): 1412-1422.
[26] Diolaiti, Nicola, et al. "Stability of haptic rendering: Discretization, quantization, time delay, and coulomb effects." IEEE Transactions on Robotics 22.2 (2006): 256-268.
[27] Culbertson, Heather, and Katherine J. Kuchenbecker. "Importance of matching physical friction, hardness, and texture in creating realistic haptic virtual surfaces." IEEE transactions on haptics 10.1 (2017): 63-74.
[28] Zhang, Songyuan, et al. "Design of a novel telerehabilitation system with a force-sensing mechanism." Sensors 15.5 (2015): 11511-11527.
[29] Saito, Masaru, and Jun Ishikawa. "Bilateral control using two-stage series-elastic actuator." Advanced Motion Control (AMC), 2016 IEEE 14th International Workshop on. IEEE, 2016.
[30] Katsura, Seiichiro, Yuichi Matsumoto, and Kouhei Ohnishi. "Realization of" law of action and reaction" by multilateral control." IEEE Transactions on Industrial Electronics 52.5 (2005): 1196-1205.
[31] 徐嘉佑 (2013)。具兩共置撓性驅動軸機器手腕之動力與控制。碩士論文。國立成功大學機械工程研究所。台南市,台灣。
[32] Dombre, Etienne, et al. "Dermarob: A safe robot for reconstructive surgery." IEEE Transactions on Robotics and Automation 19.5 (2003): 876-884.
[33] Lan, Chao-Chieh, and Yung-Jen Cheng. "Distributed shape optimization of compliant mechanisms using intrinsic functions." Journal of Mechanical Design 130.7 (2008): 072304.
[34] Lan, Chao-Chieh, and Kok-Meng Lee. "Generalized shooting method for analyzing compliant mechanisms with curved members." Journal of Mechanical Design 128.4 (2006): 765-775.
[35] Oriental motor USA Corp. (2017) "Stepper Motors (Motor Only) - PKP Series 2-Phase" Available: https://catalog.orientalmotor.com/item/all-categories/20mm-pkp-series-2-phase-bipolar-stepper-motors/pkp214d06a-r2el-l-1 [Accessed: November 12, 2018].
[36] Bodson, Marc, et al. "High-performance nonlinear feedback control of a permanent magnet stepper motor." IEEE Transactions on Control Systems Technology 1.1 (1993): 5-14.
[37] Nollet, Frédéric, Thierry Floquet, and Wilfrid Perruquetti. "Observer-based second order sliding mode control laws for stepper motors." Control engineering practice 16.4 (2008): 429-443.
[38] 簡隸 (2016)。使用串聯彈性致動器於肩外甲自適復健機器之阻抗控制。碩士論文。國立成功大學機械工程研究所。台南市,台灣。
[39] Texas Instruments Inc. (1995) " OPA548 - High-Voltage, High-Current, Wide-Output-Voltage-Swing Power Operational Amplfier" Available: http://www.ti.com/product/OPA548?keyMatch=OPA548&tisearch=Search-EN-Everything [Accessed: November 12, 2018].
[40] Delpoux, Romain, Marc Bodson, and Thierry Floquet. "Parameter estimation of permanent magnet stepper motors without mechanical sensors." Control Engineering Practice 26 (2014): 178-187.
[41] 許登傑、陳文瑞、麥朝創與蔡孟勳,中華民國一零六年,「系統頻譜分析於工具機上的應用」,機械工業雜誌。
[42] 侯佳妏 (2012)。具定扭力輸出之接頭機構。碩士論文。國立成功大學機械工程研究所。台南市,台灣。
[43] Yu, Haoyong, et al. "Human–robot interaction control of rehabilitation robots with series elastic actuators." IEEE Transactions on Robotics 31.5 (2015): 1089-1100.
[44] Choi, Wonje, et al. "Low stiffness design and hysteresis compensation torque control of SEA for active exercise rehabilitation robots." Autonomous Robots 41.5 (2017): 1221-1242.
[45] Kim, Bongsu, and Ashish D. Deshpande. "An upper-body rehabilitation exoskeleton Harmony with an anatomical shoulder mechanism: Design, modeling, control, and performance evaluation." The International Journal of Robotics Research 36.4 (2017): 414-435.
[46] Oh, Sehoon, and Kyoungchul Kong. "High-precision robust force control of a series elastic actuator." IEEE/ASME Transactions on Mechatronics 22.1 (2017): 71-80.
[47] 吳冠毅 (2018)。肘外甲機器之串聯彈性致動機構與驅動控制器設計。碩士論文。國立成功大學機械工程研究所。台南市,台灣。
[48] MISUMI Group Inc. "工業用素材-優力膠・橡膠・海綿・毛氈-圓筒・圓狀-海綿緩衝墊" Available: https://tw.misumi-ec.com/vona2/detail/110300272420/?HissuCode=CXGP40-100&PNSearch=CXGP40-100&KWSearch=CXGP40-100&searchFlow=results2type [Accessed: November 23, 2018].
[49] MISUMI Group Inc. "工業用素材-優力膠・橡膠・海綿・毛氈-圓筒・圓狀-優力膠緩衝墊 自由指定型" Available: https://tw.misumi-ec.com/vona2/detail/110300272940/?HissuCode=CXFY-D40-L80-&PNSearch=CXFY-D40-L80-N&KWSearch=CXFY-D40-L80-N&searchFlow=results2type [Accessed: November 23, 2018].
[50] MISUMI Group Inc. "工業用素材-優力膠・橡膠・海綿・毛氈-圓筒・圓狀-優力膠緩衝墊 自由指定型" Available: https://tw.misumi-ec.com/vona2/detail/110300272940/?HissuCode=CXFM-D40-L80-N&PNSearch=CXFM-D40-L80-N&KWSearch=CXFM-D40-L80-N&searchFlow=results2type [Accessed: November 23, 2018].
[51] MISUMI Group Inc. "工業用素材-優力膠・橡膠・海綿・毛氈-圓筒・圓狀-優力膠緩衝墊 自由指定型" Available: https://tw.misumi-ec.com/vona2/detail/110300272940/?HissuCode=CXFS-D40-L80-N&PNSearch=CXFS-D40-L80-N&KWSearch=CXFS-D40-L80-N&searchFlow=results2type [Accessed: November 23, 2018].
[52] Siciliano, Bruno, and Oussama Khatib, eds. Springer handbook of robotics. Springer, 2016.
校內:2023-12-13公開