| 研究生: |
楊翔淇 Yang, Shiang-Chi |
|---|---|
| 論文名稱: |
以船體運動擷取波浪能之技術研究 The Research on the Technique of Harvesting Wave Energy Through the Ship Motion |
| 指導教授: |
方銘川
Fang, Ming-Chung |
| 共同指導教授: |
楊世安
Yang, Shih-An |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 綠色能源 、獵能系統 、線性發電機 、船體運動 |
| 外文關鍵詞: | Green energy, Energy harvester, Linear generator, Ship motion |
| 相關次數: | 點閱:142 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石化能源的枯竭使得人們尋求著替代能源方案,現今的再生能源有太陽能、風能、波浪能等,但是製做太陽能板與風力發電機所費不貲,故本論文使用平板型線性發電機的概念發展一套利用船舶運動的波浪能獵能系統,用以擷取由波浪能造成的船體運動能量,再將此動能轉換成電能,為乾淨能源提出另一項不同的選擇。本文以船舶非線性六度運動方程式分析不同海況下的時程領域船體運動,經由程式計算出瞬時的縱搖或橫搖角度,在以此為基礎之下,利用動力學以及數值方法計算動子之瞬時加速度、速度以及位移,並且結合法拉第定律計算瞬時的感應電動勢,搭配二維有限元素軟體(2D-FEM)求解方程式中的磁通密度變化率,計算出不考慮摩擦力時的理想感應電動勢,以此為依據之下,推算可能的功率輸出。本文另外也實際完成一套獵能系統模型,以六軸運動平台為實驗載具,此平台可依船體運動程式所計算的瞬時縱搖或橫搖角度進行作動,同時於作動過程中量測線圈的感應電壓,最終計算出實驗的功率輸出。本文在三種不同波浪條件時,模型尺寸的功率實驗值可達約0.124W,在不考慮摩擦力的因素下,依實用狀況將模型放大三倍後,預估可以有1.675W的輸出。
The serious consumption of the mineral oil makes people seek for the alternative energy. Nowadays, there are many types of alternative energies developed in the world, such as solar power, wind power, wave power, and so on. However, it’s quite expansive to manufacture the solar power board and wind power generator. The present research applies the concept of flat linear generator to develop a wave energy harvester which is caused by the ship motion in waves. The device can harvest the energy due to the ship motion in wave and turn the motion energy into electricity. The concept offers another different choice for green energy. The thesis uses the 4th Runge Kutta method to simulate the ship’s pitch and roll motion and the mover’s acceleration, velocity and displacement are also calculated without considering the friction on the slope plane. By combining the Faraday’s Law and the mover’s motion, we can get the EMF from the wire in six different conditions. Also, we use the 2-D FEM program to solve the flux density per meter. Thus, we can obtain the EMF and calculate the system’s power. Moreover, we create a real harvester system model and take the platform base manipulator to simulate the ship motion in wave to measure the voltages and eventually we can calculate the power of the model device. The power can reach 0.124mW according to the present three wave conditions. If we enlarge the model to the realistic scale, the power might reach 1.675W.
[1]Beeby S. P., Torah R. N., Tudor M. J., Glynne-Jones P., O'Donnell T., Saha C. R., and Roy S., “A micro Electromagnetic Generator for Vibration Energy Harvesting,” Journal of Micromechanics and Microengineering, vol. 17, pp. 1257-1265, 2007.
[2]Bianchi N., Bolognani S., and Cappello A. D. F., “Reduction of Cogging Force in PM Linear Motors by Pole-Shifting,” IEE Proc.-Electr., 2005.
[3]Blanke M., Adrian J., Larsen K.-E., and Bentsen J., “Rudder Roll Damping in Coastal Region Sea Conditions,” IFAC, 2000.
[4]Faiz J., Ebrahimi-Salari M., and Shahgholian G., “Reduction of Cogging Force in Linear Permanent-Magnet Generators,” IEEE, vol. 46, 2010.
[5]Guan M. J. and Liao W. H., “On the Efficiencies of Piezoelectric Energy Harvesting Circuits towards Storage Device Voltages,” Smart Materials and Structures, vol. 16, pp. 498-505, 2007.
[6]Jamali J., “End Effect in Linear Induction and Rotating Electrical Machines,” IEEE, 2003.
[7]Kymissis J., Kendall C., Paradiso J., and Gershenfeld N., “Parasitic Power Harvesting in Shoes,” IEEE, 1998.
[8]Li H. and Pillay P., “A Linear Generator Powered from Bridge Vibrations for Wireless Sensors,” IEEE, pp. 523-529, 2007.
[9]M.Whitmer R., Electromagnetics. Englewood Cliffs,N.J.: Prentice-Hall, 1952.
[10]Polinder H., Damen M. E. C., and Gardner F., “Linear PM Generator System for Wave Energy Conversions in AWS,” IEEE, 2004.
[11]Polinder H. and Scuotto M., “Wave Energy Converters and their Impact on Power System,” IEEE, 2005.
[12]Priya S. and Inman D. J., Energy Harvesting Technologies. Boston: Springer US, 2009.
[13]Rhinefrank K., Agamloh E. B., von Jouanne, Wallace A., Prudell A. K., Kimble J., Aills K., Schmidt J., Chan P. E., Sweeny B., and Schacher A., “Novel Ocean Energy Permanent Magnet Linear Generator Buoy,” Renewable Energy, vol. 31, pp. 1279-1298, 2006.
[14]Roundy S., Leland E. S., Baker J., Carleton E., Reilly E., Lai E., Otis B., Rabaey J. M., Sundararajan V., and Wright P. K., “Improving Power Output for Vibration-Based Energy Scavengers,” IEEE, 2005.
[15]Wang C.-F., Miao D.-M., Luk P. C.-K., Shen J.-X., Xu C., and Shi D., “A Shoe-Equipped Linear Generator for Energy Harvesting,” IEEE, 2010.
[16]Yeung R. W., Peiffer A., Tom N., and Matlak T., “Design, Analysis, and Evaluation of the UC-Berkeley Wave-Energy Extractor,” 29th International Conference on Ocean, Offshore and Arctic Engineering, vol. 3, 2010.
[17]Zhu.Z.Q and Howe.D, “Halbach Permanent Magnet Machines and Applications: a review,” IEE Proc.-Elccrr, vol. 148, pp. 299-308, 2001.
[18]卓胡誼, 黃文川, 呂世智, and 吳春吉, “沒有旋轉發電機的波浪發電方式,” 太陽能及新能源學刊, 2005.
[19]林聖傑, 混合式微獵能器之概念設計分析與巨觀的實驗驗證, 國立成功大學奈米科技暨微系統工程研究所碩士論文, 民國九十七年.
[20]林繼謙, 岸基震盪水柱式波浪發電系統之設計, 國立成功大學系統及船舶機電工程研究所碩士論文, 民國九十八年.
[21]施華, 社區發展太陽能發電系統之成本效益評估, 工業安全衛生月刊, 2010.
[22]陳冠亨, 應用虛擬實境技術做操船運動與三維波浪之模擬, 國立成功大學造船暨船舶機械工程研究所碩士論文, 民國九十六年.
[23]褚同金, 海洋能資源開發利用. 北京市: 化學工業出版社, 2005.
[24]賴韋廷, 簡易熱能轉換發電裝置之研究, 國立中山大學機械與機電工程研究所碩士論文, 民國九十八年.
[25]羅志宏, 船舶在波浪中之非線性運動操控模式之探討, 國立成功大學造船暨船舶機械工程研究所博士論文, 民國九十五年.
[26]羅志宏, 船隻在順波中航向穩定性與運動之分析, 國立成功大學造船暨船舶機械工程研究所碩士論文, 民國九十年.
校內:2017-08-28公開