| 研究生: |
官法全 Kuan, Fa-Chuan |
|---|---|
| 論文名稱: |
在二頭肌腱固定手術運用創新互聯式錨釘結構-大體肩關節力學研究 Suprapectoral Biceps Tenodesis Using a Novel Interconnected Anchors Technique- A Cadaveric Biomechanical Study |
| 指導教授: |
葉明龍
Yeh, Ming-Long |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 二頭肌腱固定術 、二頭肌腱分離術 、生物力學 、錨釘 、可吸收生物螺釘 、互聯式縫線 、大體研究 、肱骨骨折 |
| 外文關鍵詞: | shoulder, biceps tenodesis, biceps tenotomy, biomechanics, suture anchor, interference screw, interconnected suture, cadaveric study, humeral fracture |
| 相關次數: | 點閱:219 下載:44 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二頭肌腱長頭(Long Head of Biceps Tendon, LHBT)是造成前方肩部疼痛的常見原因。常見的二頭肌腱相關病灶包括有:肌腱變性(Tendinopathy) 、肌腱部分斷裂(Tendon partial rupture)、肌腱滑脫以及不穩定(Tendon subluxation or instability)以及前上關節唇病變 (Superior Labral Tear)。除了保守治療外,主流的手術方式有肌腱固定術(Tenodesis)以及肌腱分離術 (Tenotomy)。在年齡較大或是功能需求低的患者,肌腱分離術可做為快速以及簡單的選擇;然而,在功能需求較高以及較年輕的患者,目前多數醫師的共識仍傾向進行肌腱固定手術,以期可以保有患者的肌肉力量以及外型美觀。另外,也可以相當程度的減少手術後肌肉相關疼痛的發生率。肌腱固定術,顧名思義需將肌腱固定回近端肱骨合適的位置上。一般認為需要超過三個月的時間,肌腱組織內的膠原纖維(Collagen Fiber)才可以跟新生的骨頭(Woven Bone)長在一起。在癒合期間,整個縫補結構就需要仰賴強壯的固定物來維持。目前臨床上常使用的固定物有:可吸收性的生物螺釘(Bioabsorbable interference screw)、一隻或兩隻固定錨釘(Single or Double Suture anchors)、懸吊系統(Suspension system)等。傳統上,可吸收螺釘一直是主流的選擇,因為根據過去的力學研究指出,可吸收螺釘可以提供較高的固定強度(Fixation strength)以及循環測試後較少的位移(Cyclic displacement)。不過,可吸收螺釘也伴隨有一些不可避免的風險。因為尺寸的關係,該螺釘多需要6mm以上的肱骨鑽孔(Drilling Hole),而過去研究曾提出較大的鑽孔會造成骨頭結構的破壞,導致肱骨骨折的機會上升。另外,在將螺釘旋轉植入的過程中,也有將肌腱擠壓破壞導致肌腱斷裂的風險。由於以上的缺點,近年有些醫師傾向採取其他的固定選擇。舉例而言,廣泛使用在肩部肌腱縫合的固定錨釘(Suture Anchor)就是另一個熱門的選擇,因為固定錨釘所需的鑽骨孔徑較小,因此骨折風險較低,同時肌腱的破壞也較小。這種方式的原理為運用縫線將肌腱與骨頭做連結,因此過去許多力學研究著重在探討不同的錨釘配置以及各種縫補方式的搭配,希望能在生物力學的基礎上,找出能提供最佳固定力量以及穩定度的模組。本研究為二頭肌腱固定術的研究,來檢驗三種固定方式,分別羅列如下:(1)可吸收生物螺釘組(Interference screw, IS) (2)雙支錨釘,單純縫線組(Double knotless anchors, DKA) (3)雙支錨釘,互聯式縫線組(Interconnected knotless anchors, IKA),係本研究的創新作法。本研究使用肩部大體來進行系列的生物力學實驗,每種固定方式進行八個樣本測試。目前業已完成所有樣本測試,IKA組的平均力學表現如下:Stiffness(38.9 ± 7.7 N/mm);ultimate failure load (288.3 ± 47.6 N)。同時IS組的平均數值為:Stiffness(26.6 ± 6.3 N/mm) ; ultimate failure load (227.0 ± 52.4 N) 。 而DKA組的平均數值為:Stiffness(14.4 ± 3.1 N/mm);ultimate failure load (167.0 ± 19.3 N)。經統計後發現,IKA組相對於IS組以及DKA組,在Stiffness以及ultimate failure load均可以達到統計顯著的優勢 (p < 0.05)。另外,在循環測試後的位移,三組固定方式並無產生統計顯著的差距。此外,在研究中觀察到最常見的樣本破壞模組(Failure mode)如下:IS組是肌腱斷裂(7/8),DKA組是縫線脫落(6/8),而在IKA組是肌腱被縫線切割破壞(8/8)。根據本篇研究結論,未來IKA或可做為臨床上二頭肌固定手術的另一種可靠選擇。
The long head of biceps tendon (LHBT) has been regarded as a source of anterior shoulder pain since one hundred years ago, however, the treatment of the LHBT lesion remains controversial. The surgery is indicated in symptomatic patient who have LHB tendon pathology, labral lesions and failed to conservative treatment. Two most common procedures involve LHBT tenodesis or tenotomy, both techniques are well-established and have their own proponents. Although tenotomy served as a simple and quick surgery. In younger and active population, several studies have shown the preference for tenodesis regarding the cosmetic concern and better muscle strength.
A variety of implants have been described for the tenodesis, including the interference screw, single or dual suture anchors, suspensory device and other implant free techniques. In majority of studies, interference screw was shown to have biomechanical superiority compared with the other methods. However, the risk of iatrogenic humeral fracture has been reported. Alternatively, some surgeon advocated tenodesis technique with suture anchor to prevent such complication. In a biomechanical study, the author demonstrated only one suture anchor may not provide adequate strength for tendon fixation. As a result, the method utilizing dual suture anchor fixation has been proposed to increase the fixation strength.
The purpose of this study is to introduce a novel tenodesis technique using two knotless anchors in interconnected fashion, the construct was compared with two traditional fixations in biomechanical perspective. The study was conducted with 24 cadaveric shoulder, the result demonstrated that the IKA exhibited 38.9 ± 7.7 N/mm in stiffness and 288.3 ± 47.6 N in ultimate failure load, IS exhibited 26.6 ± 6.3 N/mm in stiffness and 227.0 ± 52.4 N in ultimate failure load, DKA exhibited 14.4 ± 3.1 N/mm in stiffness and 167.0 ± 19.3 N in ultimate failure load. The both values in IKA were significantly greater than that in IS and DKA group. In regard of the displacement after the cyclic test, there was no statistical difference between the three groups. The most commonly observed failure mode was biceps tendon rupture in IS group (7/8), suture slippage in DKA group(6/8), and tendon split by suture in IKA group (8/8). Based on the result, the interconnected knotless anchor could offer an alternative in suprapectoral tenodesis.
1. Elser F, Braun S, Dewing CB, Giphart JE, Millett PJ. Anatomy, function, injuries, and treatment of the long head of the biceps brachii tendon. Arthroscopy. 2011;27:581-592.
2. Forthman CL, Zimmerman RM, Sullivan MJ, Gabel GT. Cross-sectional anatomy of the bicipital tuberosity and biceps brachii tendon insertion: relevance to anatomic tendon repair. J Shoulder Elbow Surg. 2008;17:522-526.
3. Pagnani MJ, Deng XH, Warren RF, Torzilli PA, O'Brien SJ. Role of the long head of the biceps brachii in glenohumeral stability: a biomechanical study in cadavera. J Shoulder Elbow Surg. 1996;5:255-262.
4. Elser F, Braun S, Dewing CB, Giphart JE, Millett PJ. Anatomy, function, injuries, and treatment of the long head of the biceps brachii tendon. Arthroscopy. 2011;27:581-592.
5. Patzer T, Habermeyer P, Hurschler C, et al. The influence of superior labrum anterior to posterior (SLAP) repair on restoring baseline glenohumeral translation and increased biceps loading after simulated SLAP tear and the effectiveness of SLAP repair after long head of biceps tenotomy. J Shoulder Elbow Surg. 2012;21:1580-1587.
6. Kuhn JE, Huston LJ, Soslowsky LJ, Shyr Y, Blasier RB. External rotation of the glenohumeral joint: ligament restraints and muscle effects in the neutral and abducted positions. J Shoulder Elbow Surg. 2005;14:39s-48s.
7. Cheng NM, Pan WR, Vally F, Le Roux CM, Richardson MD. The arterial supply of the long head of biceps tendon: Anatomical study with implications for tendon rupture. Clin Anat. 2010;23:683-692.
8. Soden J. Two cases of dislocation of the tendon of the long head of the biceps humeri from its groove. Med Chir Trans. 1841;24:212-220.
9. Altman DG, Gore SM, Gardner MJ, Pocock SJ. Statistical guidelines for contributors to medical journals. Br Med J (Clin Res Ed). 1983;286:1489.
10. Habermeyer P, Magosch P, Pritsch M, Scheibel MT, Lichtenberg S. Anterosuperior impingement of the shoulder as a result of pulley lesions: a prospective arthroscopic study. J Shoulder Elbow Surg. 2004;13:5-12.
11. Braun S, Horan MP, Elser F, Millett PJ. Lesions of the biceps pulley. Am J Sports Med. 2011;39:790-795.
12. Baumann B, Genning K, Böhm D, Rolf O, Gohlke F. Arthroscopic prevalence of pulley lesions in 1007 consecutive patients. J Shoulder Elbow Surg. 2008;17:14-20.
13. Gaskill TR, Braun S, Millett PJ. The rotator interval: pathology and management. Arthroscopy. 2011;27:556-567.
14. Gerber C, Sebesta A. Impingement of the deep surface of the subscapularis tendon and the reflection pulley on the anterosuperior glenoid rim: a preliminary report. J Shoulder Elbow Surg. 2000;9:483-490.
15. Martetschläger F, Tauber M, Habermeyer P. Injuries to the biceps pulley. Clin Sports Med. 2016;35:19-27.
16. Favorito PJ, Harding III WG, Heidt Jr RS. Complete arthroscopic examination of the long head of the biceps tendon. Arthroscopy. 2001;17:430-432.
17. Gill TJ, McIrvin E, Mair SD, Hawkins RJ. Results of biceps tenotomy for treatment of pathology of the long head of the biceps brachii. J Shoulder Elbow Surg. 2001;10:247-249.
18. Andrews JR, Carson WG, Jr., McLeod WD. Glenoid labrum tears related to the long head of the biceps. Am J Sports Med. 1985;13:337-341.
19. Snyder SJ, Karzel RP, Del Pizzo W, Ferkel RD, Friedman MJ. SLAP lesions of the shoulder. Arthroscopy. 1990;6:274-279.
20. Khazzam M, George MS, Churchill RS, Kuhn JE. Disorders of the long head of biceps tendon. J Shoulder Elbow Surg. 2012;21:136-145.
21. Hsu AR, Ghodadra NS, Provencher CMT, Lewis PB, Bach BR. Biceps tenotomy versus tenodesis: a review of clinical outcomes and biomechanical results. J Shoulder Elbow Surg. 2011;20:326-332.
22. Boileau P, Krishnan SG, Coste J-S, Walch G. Arthroscopic biceps tenodesis: a new technique using bioabsorbable interference screw fixation. Arthroscopy. 2002;18:1002-1012.
23. Su W-R, Budoff JE, Chiang C-H, Lee C-J, Lin C-L. Biomechanical study comparing biceps wedge tenodesis with other proximal long head of the biceps tenodesis techniques. Arthroscopy. 2013;29:1498-1505.
24. Shang X, Chen J, Chen S. A meta-analysis comparing tenotomy and tenodesis for treating rotator cuff tears combined with long head of the biceps tendon lesions. PLoS One. 2017;12:e0185788.
25. Leroux T, Chahal J, Wasserstein D, Verma NN, Romeo AA. A Systematic Review and Meta-analysis Comparing Clinical Outcomes After Concurrent Rotator Cuff Repair and Long Head Biceps Tenodesis or Tenotomy. Sports Health. 2015;7:303-307.
26. Gurnani N, van Deurzen DF, Janmaat VT, van den Bekerom MP. Tenotomy or tenodesis for pathology of the long head of the biceps brachii: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2016;24:3765-3771.
27. Nho SJ, Strauss EJ, Lenart BA, et al. Long head of the biceps tendinopathy: diagnosis and management. J Am Acad Orthop Surg. 2010;18:645-656.
28. Wolf RS, Zheng N, Weichel D. Long head biceps tenotomy versus tenodesis: a cadaveric biomechanical analysis. Arthroscopy. 2005;21:182-185.
29. Hong CK, Chang CH, Chiang FL, et al. Biomechanical properties of suprapectoral biceps tenodesis: double knotless screw fixation is superior to single knotless screw fixation. Arch Orthop Trauma Surg. 2018;138:1127-1134.
30. Richards DP, Burkhart SS. A biomechanical analysis of two biceps tenodesis fixation techniques. Arthroscopy. 2005;21:861-866.
31. Parisien RL, Trofa DP, Kang HP, et al. Increased Risk of Humeral Fracture With Open Versus Arthroscopic Tenodesis of the Long Head of the Biceps Brachii. Arthrosc Sports Med Rehabil. 2020;2:e329-e332.
32. Rhee PC, Spinner RJ, Bishop AT, Shin AY. Iatrogenic brachial plexus injuries associated with open subpectoral biceps tenodesis: a report of 4 cases. Am J Sports Med. 2013;41:2048-2053.
33. Patzer T, Santo G, Olender GD, Wellmann M, Hurschler C, Schofer MD. Suprapectoral or subpectoral position for biceps tenodesis: biomechanical comparison of four different techniques in both positions. J Shoulder Elbow Surg. 2012;21:116-125.
34. Su W-R, Ling FY, Hong C-K, Chang C-H, Chung K-C, Jou I-M. An arthroscopic technique for long head of biceps tenodesis with double knotless screw. Arthrosc Tech. 2015;4:e375-e378.
35. Hirahara AM, Andersen WJ. The PASTA Bridge: A technique for the arthroscopic repair of PASTA lesions. Arthrosc Tech. 2017;6:e1645-e1652.
36. Funakoshi T, Hartzler R, Stewien E, Burkhart S. Remplissage using interconnected knotless anchors: Superior biomechanical properties to a knotted technique? Arthroscopy. 2018;34:2954-2959.
37. Hirahara AM, Andersen WJ, Yamashiro K. Arthroscopic Knotless Remplissage for the Treatment of Hill-Sachs Lesions Using the PASTA Bridge Configuration. Arthrosc Tech. 2019;8:e275-e281.
38. Moon SC, Cho NS, Rhee YG. Analysis of “hidden lesions” of the extra-articular biceps after subpectoral biceps tenodesis: the subpectoral portion as the optimal tenodesis site. Am J Sports Med. 2015;43:63-68.
39. Hong C-K, Hsu K-L, Kuan F-C, Lin C-L, Yeh M-L, Su W-R. Biomechanical evaluation of a transtendinous all-suture anchor technique versus interference screw technique for suprapectoral biceps tenodesis in a cadaveric model. Arthroscopy. 2018;34:1755-1761.
40. Kuan FC, Hsu KL, Yen JZ, et al. Using Interconnected Knotless Anchor for Suprapectoral Biceps Tenodesis Could Offer Improved Biomechanical Properties in a Cadaveric Model. Arthroscopy. 2020;36:2047-2054.
41. Buchholz A, Martetschläger F, Siebenlist S, et al. Biomechanical comparison of intramedullary cortical button fixation and interference screw technique for subpectoral biceps tenodesis. Arthroscopy. 2013;29:845-853.
42. Krushinski EM, Brown JA, Murthi AM. Distal biceps tendon rupture: biomechanical analysis of repair strength of the Bio-Tenodesis screw versus suture anchors. J Shoulder Elbow Surg. 2007;16:218-223.
43. Werner BC, Lyons ML, Evans CL, et al. Arthroscopic suprapectoral and open subpectoral biceps tenodesis: a comparison of restoration of length-tension and mechanical strength between techniques. Arthroscopy. 2015;31:620-627.
44. Arora AS, Singh A, Koonce RC. Biomechanical evaluation of a unicortical button versus interference screw for subpectoral biceps tenodesis. Arthroscopy. 2013;29:638-644.
45. Mazzocca AD, Bicos J, Santangelo S, Romeo AA, Arciero RA. The biomechanical evaluation of four fixation techniques for proximal biceps tenodesis. Arthroscopy. 2005;21:1296-1306.
46. Aida HF, Shi BY, Huish EG, Jr., McFarland EG, Srikumaran U. Are Implant Choice and Surgical Approach Associated With Biceps Tenodesis Construct Strength? A Systematic Review and Meta-regression. Am J Sports Med. 2020;48:1273-1280.
47. AlQahtani SM, Bicknell RT. Outcomes following long head of biceps tendon tenodesis. Curr Rev Musculoskelet Med. 2016;9:378-387.
48. Overmann AL, Colantonio DF, Wheatley BM, Volk WR, Kilcoyne KG, Dickens JF. Incidence and Characteristics of Humeral Shaft Fractures After Subpectoral Biceps Tenodesis. Ortho J Sports Med. 2019;7:2325967119833420.
49. Consigliere P, Salamat S, Kader N, Imam M, Gowda A, Narvani AA. The X-Pulley Technique for Subpectoral Long Head of the Biceps Tenodesis Using All-Suture Anchors. Arthrosc Tech. 2019;8:e189-e197.
50. Sethi PM, Rajaram A, Beitzel K, Hackett TR, Chowaniec DM, Mazzocca AD. Biomechanical performance of subpectoral biceps tenodesis: a comparison of interference screw fixation, cortical button fixation, and interference screw diameter. J Shoulder Elbow Surg. 2013;22:451-457.
51. Nebelung W, Becker R, Urbach D, Röpke M, Roessner A. Histological findings of tendon-bone healing following anterior cruciate ligament reconstruction with hamstring grafts. Arch Orthop Trauma Surg. 2003;123:158-163.
52. Chiang FL, Hong CK, Chang CH, Lin CL, Jou IM, Su WR. Biomechanical Comparison of All-Suture Anchor Fixation and Interference Screw Technique for Subpectoral Biceps Tenodesis. Arthroscopy. 2016;32:1247-1252.
53. Sampatacos N, Getelman MH, Henninger HB. Biomechanical comparison of two techniques for arthroscopic suprapectoral biceps tenodesis: interference screw versus implant-free intraosseous tendon fixation. J Shoulder Elbow Surg. 2014;23:1731-1739.
54. Denard PJ, Dai X, Hanypsiak BT, Burkhart SS. Anatomy of the biceps tendon: implications for restoring physiological length-tension relation during biceps tenodesis with interference screw fixation. Arthroscopy. 2012;28:1352-1358.
55. Park MC, ElAttrache NS, Tibone JE, Ahmad CS, Jun BJ, Lee TQ. Part I: Footprint contact characteristics for a transosseous-equivalent rotator cuff repair technique compared with a double-row repair technique. J Shoulder Elbow Surg. 2007;16:461-468.