簡易檢索 / 詳目顯示

研究生: 歐孟融
Ou, Meng-Jung
論文名稱: 氧化鋅電紡絲的製備與分析
Fabrication and Characterization of Electrospun Zinc Oxide Nanofibers
指導教授: 郭昌恕
Kuo, Chang-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 83
中文關鍵詞: 電紡絲氧化鋅黏著性
外文關鍵詞: electrospinning, zinc oxide, nanofiber, adhesion
相關次數: 點閱:162下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一維氧化鋅絲可藉由電紡絲技術製備。在水溶液中,鋅粉末與聚丙烯酸高分子反應。鋅氧化成鋅離子,並與聚丙烯酸高分子螯合。鋅離子與聚丙烯酸高分子水溶液拿來當作電紡絲的前驅物,製作出鋅離子混合聚丙烯酸高分子的一維電紡絲。經過鍛燒後高分子被燃燒成二氧化碳與水氣消散,留下氧化鋅。鋅離子與聚丙烯酸高分子水溶液的濃度、電紡絲工作距離及前驅物進料速率,可以改變鋅離子混合聚丙烯酸高分子以及純氧化鋅電紡絲的直徑。氧化鋅電紡絲的直徑在一百奈米這個量級,恰好有很廣泛的應用。氧化鋅電紡絲與基板間的黏著性也進行研究。氧化鋅電紡絲與基板間增加一層預製層,並且在鍛燒前進行熱壓,黏著性有改善。紫外-可見漫反射光譜可測量氧化鋅能隙。X光繞射圖譜顯示氧化鋅電紡絲是纖維鋅礦結構。從X光繞射圖譜氧化鋅電紡絲的平均晶粒尺寸可藉由謝樂爾公式計算出。

    One-dimensional zinc oxide nanofibers was synthesized via electrospinning method. Zinc powder react with poly(acrylic acid) (PAA) and forms Zn2+ ions which chelate with PAA carboxylic group in an aqueous solvent. The aqueous solution of Zn2+/PAA is utilized as the electrospinning solvent and Zn2+/PAA fibers are produced. After calcination process, the polymer burned into CO2(g) and H2O(g) and only zinc oxide remained. Concentration of Zn2+ and PAA, the electrospinning working distance, and the feeding rate alter the diameters of as-spun and calcined fibers. Diameter of zinc oxide nanofibers is at about 100 nm. The adhesion between ZnO fibers and substrate were also investigated. With additional prefabricated layer between electrospun ZnO fibers and substrate and the hot-processing process prior to the calcination, the adhesion of ZnO fibers was successfully improved. Band gap of ZnO nanofibers was obtained via UV-vis diffusive reflectance spectra. X-ray diffraction (XRD) spectra showed that the structure of ZnO fibers is wurtzite. The grain size of ZnO fibers can be measured from XRD spectra via Scherrer formula.

    誌謝.......................................................i 中文摘要...................................................ii Abstract.................................................iii Table of contents.........................................iv List of tables............................................vi List of illustrations....................................vii Chapter 1. Introduction....................................1 1.1 Synthetic Approaches for 1-D ZnO Nanomaterials.........1 1.1.1 Vapor-Liquid-Solid mechanism.........................2 1.1.2 Vapor-Solid mechanism................................4 1.1.3 Pulsed laser deposition..............................6 1.1.4 Electrodeposition....................................6 1.1.5 Sol-gel method.......................................8 1.1.6 Hydrothermal method..................................8 1.2 Electrospinning.......................................10 1.2.1 Electrospinning theory..............................10 1.2.2 Precursor...........................................11 1.2.3 Multi jet electrospinning and mixed electrospinning.13 1.2.4 Coaxial and bicomponent-jet electrospinning.........14 1.2.5 Fiber alignment.....................................16 1.2.6 Electrospun inorganic materials.....................19 1.3 Applications of Electrospun ZnO Nanofibers............24 1.3.1 Sensors.............................................24 1.3.2 UV detectors........................................27 1.3.3 Dye-sensitized solar cell...........................28 1.3.4 Antibacteria........................................29 1.3.5 Field effect transistor.............................30 1.4 Research Motivation...................................30 Chapter 2. Experiments....................................31 2.1 Materials and Instruments.............................31 2.1.1 Materials...........................................31 2.1.2 Instruments.........................................32 2.2 Experiment Process....................................33 2.2.1 Zn2+/PAA solution preparation.......................33 2.2.2 Fabrications of Zinc/PAA as-spun nanowires..........34 2.2.3 Calcination process to crystallize 1-D ZnO nanofibers................................................35 2.2.4 Fabrications of samples for adhesion measurement....36 2.2.4.1 Fabrications of blocking layers...................36 2.2.4.2 Fabrications of prefabricated layers..............37 2.2.4.3 Hot pressing process..............................38 2.3 Analysis Instrument...................................40 2.3.1 Scanning electron microscopy (SEM):.................40 2.3.2 Glancing incident angle X-ray diffractometer (GIA-XED):.....................................................40 2.3.3 Ultraviolet-visible spectrometer (UV-vis): (Hitachi U-3010).....................................................42 Chapter 3. Results and Discussions........................43 3.1 The Fiber Diameters and Fiber Mass....................43 3.1.1 Diameters of as-spun and calcined nanofibers........43 3.1.2 Effect of parameters on fiber diameters.............47 3.1.3 The fiber mass......................................49 3.2 The Adhesion of ZnO Nanofibers........................51 3.2.1 Controlling the thickness of ZnO nanofibers’ layer..51 3.2.2 Temperature effect on hot pressing process..........52 3.2.3 Effect of the thickness of prefabricated layer......55 3.2.4 Discussion on the principle of prefabricated layer..57 3.3 Spectra of Nanofibers.................................57 3.3.1 The UV-vis and UV-vis diffusive reflectance spectra of as-spun Zn2+/PAA and calcined ZnO fibers..................57 3.3.2 Bandgap.............................................62 3.4 X-Ray Diffraction Spectra.............................63 3.4.1 Structure...........................................63 3.4.2 Grain size..........................................69 Chapter 4. Conclusions....................................75 Reference.................................................76

    [1]Yu, W.; Li, X.; Gao, X.; Qiu, P.; Cheng, W.; Ding, A., Effect of zinc sources on the morphology of ZnO nanostructures and their photoluminescence properties.
    Applied Physics A: Materials Science & Processing 2004, 79 (3), 453-456.
    [2]Zhang, Z.; Wang, S.; Yu, T.; Wu, T., Controlling the growth mechanism of ZnO nanowires by selecting catalysts. The Journal of Physical Chemistry C 2007, 111 (47), 17500-17505.
    [3]Li, S. Y.; Lee, C. Y.; Tseng, T. Y., Copper-catalyzed ZnO nanowires on silicon (100) grown by vapor-liquid-solid process. Journal of crystal growth 2003, 247 (3-4), 357-362.
    [4]Gao, P.; Ding, Y.; Wang, Z., Crystallographic orientation-aligned ZnO nanorods grown by a tin catalyst. Nano Letters 2003, 3 (9), 1315-1320.
    [5]Engels, V.; Rachamim, A.; Dalal, S. H.; Pfaendler, S. M. L.; Geng, J.; Berenguer-Murcia, A.; Flewitt, A. J.; Wheatley, A. E. H., Nanoparticulate PdZn as a Novel Catalyst for ZnO Nanowire Growth. Nanoscale research letters 2010, 5 (5), 904-907.
    [6]Gundiah, G.; Deepak, F. L.; Govindaraj, A.; Rao, C., Carbothermal synthesis of the nanostructures of Al2O3 and ZnO. Topics in catalysis 2003, 24 (1), 137-146.
    [7]Fan, H.; Fleischer, F.; Lee, W.; Nielsch, K.; Scholz, R.; Zacharias, M.; Gosele, U.; Dadgar, A.; Krost, A., Patterned growth of aligned ZnO nanowire arrays on sapphire and GaN layers. Superlattices and Microstructures 2004, 36 (1), 95-105.
    [8]Lee, W.; Jeong, M. C.; Myoung, J. M., Catalyst-free growth of ZnO nanowires by metal-organic chemical vapour deposition (MOCVD) and thermal evaporation. Acta materialia 2004, 52 (13), 3949-3957.
    [9]Fan, H.; Bertram, F.; Dadgar, A.; Christen, J.; Krost, A.; Zacharias, M., Self-assembly of ZnO nanowires and the spatial resolved characterization of their luminescence. Nanotechnology 2004, 15, 1401.
    [10]Zhang, J.; Yu, W.; Zhang, L., Fabrication of semiconducting ZnO nanobelts using a halide source and their photoluminescence properties. Physics Letters A 2002, 299 (2-3), 276-281.
    [11]Yao, B.; Chan, Y.; Wang, N., Formation of ZnO nanostructures by a simple way of thermal evaporation. Applied physics letters 2002, 81, 757.
    [12]Sun, Y.; Fuge, G. M.; Ashfold, M. N. R., Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods. Chemical Physics Letters 2004, 396
    (1-3), 21-26.
    [13]Li, Y.; Meng, G.; Zhang, L.; Phillipp, F., Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties. Applied physics letters 2000, 76 (15), 2011-2013.
    [14]Zheng, M.; Zhang, L.; Li, G.; Shen, W., Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique. Chemical Physics Letters 2002, 363 (1-2), 123-128.
    [15]Liu, R.; Vertegel, A. A.; Bohannan, E. W.; Sorenson, T. A.; Switzer, J. A., Epitaxial electrodeposition of zinc oxide nanopillars on single-crystal gold. Chemistry of materials 2001, 13 (2), 508-512.
    [16]Elias, J.; Tena-Zaera, R.; Levy-Clement, C., Effect of the chemical nature of the anions on the electrodeposition of ZnO nanowire arrays. The Journal of Physical Chemistry C 2008, 112 (15), 5736-5741.
    [17]Lai, M.; Riley, D. J., Templated electrosynthesis of zinc oxide nanorods. Chemistry of materials 2006, 18 (9), 2233-2237.
    [18]Leprince-Wang, Y.; Wang, G.; Zhang, X.; Yu, D., Study on the microstructure and growth mechanism of electrochemical deposited ZnO nanowires. Journal of
    crystal growth 2006, 287 (1), 89-93.
    [19]Lakshmi, B. B.; Dorhout, P. K.; Martin, C. R., Sol-gel template synthesis of semiconductor nanostructures. Chemistry of materials 1997, 9 (3), 857-862.
    [20]Yoshimura, M.; Byrappa, K., Hydrothermal processing of materials: past, present and future. Journal of Materials Science 2008, 43 (7), 2085-2103.
    [21]Li, Z.; Xiong, Y.; Xie, Y., Selected-control synthesis of ZnO nanowires and nanorods via a PEG-assisted route. Inorganic chemistry 2003, 42 (24), 8105-8109.
    [22]Shen, L.; Bao, N.; Yanagisawa, K.; Gupta, A.; Domen, K.; Grimes, C. A., Controlled synthesis and assembly of nanostructured ZnO architectures by a solvothermal soft chemistry process. Crystal Growth and Design 2007, 7 (12), 2742-2748.
    [23]Pal, U.; Santiago, P., Controlling the morphology of ZnO nanostructures in a low-temperature hydrothermal process. The Journal of Physical Chemistry B 2005, 109 (32), 15317-15321.
    [24]Ram, S. D. G.; Ravi, G.; Manikandan, M. R.; Mahalingam, T.; Anbu Kulandainathan, M., Controlled hydrothermal growth of ZnO nanostructures by sequestering the Zn metal ions with the chelating agent EDTA. Superlattices and Microstructures 2011, 50 (4), 296-302.
    [25]Wu, W.-Y.; Kung, W.-Y.; Ting, J.-M., Effect of pH Values on the Morphology of Zinc Oxide Nanostructures and their Photoluminescence Spectra. Journal of the American Ceramic Society 2011, 94 (3), 699-703.
    [26]Lyons, J.; Li, C.; Ko, F., Melt-electrospinning part I: processing parameters and geometric properties. Polymer 2004, 45 (22), 7597-7603.
    [27]Dalton, P. D.; Klinkhammer, K.; Salber, J.; Klee, D.; Moller, M., Direct in vitro electrospinning with polymer melts. Biomacromolecules 2006, 7 (3), 686-690.
    [28]Dalton, P. D.; Lleixa Calvet, J.; Mourran, A.; Klee, D.; Moller, M., Melt electrospinning of poly?(ethylene glycol?block???caprolactone). Biotechnology journal
    2006, 1 (9), 998-1006.
    [29]Giza, E.; Ito, H.; Kikutani, T.; Okui, N., Fiber structure formation in high-speed melt spinning of polyamide 6/clay hybrid nanocomposite. Journal of Macromolecular
    Science, Part B 2000, 39 (4), 545-559.
    [30]Dosunmu, O.; Chase, G.; Kataphinan, W.; Reneker, D., Electrospinning of polymer nanofibres from multiple jets on a porous tubular surface. Nanotechnology 2006, 17, 1123.
    [31]Kidoaki, S.; Kwon, I. K.; Matsuda, T., Mesoscopic spatial designs of nano-and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised
    multilayering and mixing electrospinning techniques. Biomaterials 2005, 26 (1), 37-46.
    [32]Yarin, A.; Zussman, E., Upward needleless electrospinning of multiple nanofibers. Polymer 2004, 45 (9), 2977-2980.
    [33]Wang, M.; Jing, N.; Su, C. B.; Kameoka, J.; Chou, C. K.; Hung, M. C.; Chang, K. A., Electrospinning of silica nanochannels for single molecule detection. Applied
    physics letters 2006, 88, 033106.
    [34]Gupta, P.; Wilkes, G. L., Some investigations on the fiber formation by utilizing a side-by-side bicomponent electrospinning approach. Polymer 2003, 44 (20), 6353-6359.
    [35]Lin, T.; Wang, H.; Wang, X., Self?Crimping Bicomponent Nanofibers Electrospun from Polyacrylonitrile and Elastomeric Polyurethane. Advanced Materials 2005, 17 (22), 2699-2703.
    [36]Matthews, J. A.; Wnek, G. E.; Simpson, D. G.; Bowlin, G. L., Electrospinning of collagen nanofibers.Biomacromolecules 2002, 3 (2), 232-238.
    [37]Katta, P.; Alessandro, M.; Ramsier, R.; Chase, G., Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector. Nano Letters 2004, 4 (11),
    2215-2218.
    [38]Bhattarai, N.; Edmondson, D.; Veiseh, O.; Matsen, F. A.; Zhang, M., Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 2005, 26 (31), 6176-6184.
    [39]Pan, H.; Li, L.; Hu, L.; Cui, X., Continuous aligned polymer fibers produced by a modified electrospinning method. Polymer 2006, 47 (14), 4901-4904.
    [40]Theron, A.; Zussman, E.; Yarin, A., Electrostatic field-assisted alignment of
    electrospun nanofibres. Nanotechnology 2001, 12, 384.
    [41]Li, D.; Wang, Y.; Xia, Y., Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Letters 2003, 3 (8), 1167-1171.
    [42]Teo, W.; Ramakrishna, S., Electrospun fibre bundle made of aligned nanofibres over two fixed points. Nanotechnology 2005, 16, 1878.
    [43]Dalton, P. D.; Klee, D.; Moller, M., Electrospinning with dual collection rings. Polymer 2005, 46 (3), 611-614.
    [44]Azad, A. M., Fabrication of transparent alumina (Al2O3) nanofibers by electrospinning. Materials Science and Engineering: A 2006, 435, 468-473.
    [45]McCann, J. T.; Chen, J. I. L.; Li, D.; Ye, Z. G.; Xia, Y., Electrospinning of polycrystalline barium titanate nanofibers with controllable morphology and alignment. Chemical Physics Letters 2006, 424 (1-3), 162-166.
    [46]Yin, T.; Liu, D.; Ou, Y.; Ma, F.; Xie, S.; Li, J. F.; Li, J., Nanocrystalline Thermoelectric Ca3Co4O9 Ceramics by Sol? Gel Based Electrospinning and Spark Plasma Sintering. The Journal of Physical Chemistry C 2010, 114 (21), 10061-10065.
    [47]Yang, X.; Shao, C.; Liu, Y.; Mu, R.; Guan, H., Nanofibers of CeO2 via an electrospinning technique. Thin Solid Films 2005, 478 (1-2), 228-231.
    [48]Gu, Y.; Jian, F.; Wang, X., Synthesis and characterization of nanostructured Co3O4 fibers used as anode materials for lithium ion batteries. Thin Solid Films 2008, 517 (2), 652-655.
    [49]Hao, R.; Yuan, J.; Peng, Q., Fabrication and Sensing Behavior of Cr2O3 Nanofibers via In situ Gelation and Electrospinning. Chemistry Letters 2006, 35 (11),
    1248-1249.
    [50] Wu, H.; Lin, D.; Pan, W., Fabrication, assembly, and electrical characterization of CuO nanofibers. Applied physics letters 2006, 89, 133125.
    [51]Zheng, W.; Li, Z.; Zhang, H.; Wang, W.; Wang, Y.; Wang, C., Electrospinning route for [alpha]-Fe2O3 ceramic nanofibers and their gas sensing properties. Materials Research Bulletin 2009, 44 (6), 1432-1436.
    [52]Viswanathamurthi, P.; Bhattarai, N.; Kim, H. Y.; Khil, M. S.; Lee, D. R.; Suh, E. K., GeO2 fibers: Preparation, morphology and photoluminescence property. Journal of Chemical Physics 2004, 121 (1), 441-445.
    [53]Zhang, Y.; Li, J.; Li, Q.; Zhu, L.; Liu, X.; Zhong, X.; Meng, J.; Cao, X., Preparation of In2O3 ceramic nanofibers by electrospinning and their optical properties. Scripta materialia 2007, 56 (5), 409-412.
    [54]Li, J.; Dai, H.; Li, Q.; Zhong, X.; Ma, X.; Meng, J.; Cao, X., Lanthanum zirconate nanofibers with high sintering-resistance. Materials Science and Engineering: B 2006, 133 (1-3), 209-212.
    [55]Gu, Y.; Chen, D.; Jiao, X., Synthesis and electrochemical properties of nanostructured LiCoO2 fibers as cathode materials for lithium-ion batteries. The Journal of Physical Chemistry B 2005, 109 (38), 17901-17906.
    [56]Yu, N.; Shao, C.; Liu, Y.; Guan, H.; Yang, X., Nanofibers of LiMn2O4 by electrospinning. Journal of colloid and interface science 2005, 285 (1), 163-166.
    [57]Zhan, S.; Li, Y.; Yu, H., Sol-Gel Co-Electrospun LiNiO2 Hollow Nanofibers. Journal of Dispersion Science and Technology 2008, 29 (6), 823-826.
    [58]Lu, H. W.; Zeng, W.; Li, Y. S.; Fu, Z. W., Fabrication and electrochemical properties of three-dimensional net architectures of anatase TiO2 and spinel Li4Ti5O12 nanofibers. Journal of power sources 2007, 164 (2), 874-879.
    [59]Dharmaraj, N.; Park, H.; Lee, B.; Viswanathamurthi, P.; Kim, H.; Lee, D., Preparation and morphology of magnesium titanate nanofibres via electrospinning. Inorganic chemistry communications 2004, 7 (3), 431-433.
    [60]Fan, Q.; Whittingham, M. S., Electrospun manganese oxide nanofibers as anodes for lithium-ion batteries. Electrochemical and solid-state letters 2007, 10, A48.
    [61]Li, S.; Shao, C.; Liu, Y.; Tang, S.; Mu, R., Nanofibers and nanoplatelets of MoO3 via an electrospinning technique. Journal of Physics and Chemistry of Solids 2006, 67 (8), 1869-1872.
    [62]Maensiri, S.; Nuansing, W., Thermoelectric oxide NaCo2O4 nanofibers fabricated by electrospinning. Materials Chemistry and Physics 2006, 99 (1), 104-108.
    [63]Viswanathamurthi, P.; Bhattarai, N.; Kim, H.; Lee, D.; Kim, S.; Morris, M., Preparation and morphology of niobium oxide fibres by electrospinning. Chemical Physics Letters 2003, 374 (1-2), 79-84.
    [64]Li, D.; Herricks, T.; Xia, Y., Magnetic nanofibers of nickel ferrite prepared by electrospinning. Applied physics letters 2003, 83 (22), 4586-4588.
    [65]Dharmaraj, N.; Park, H.; Kim, C.; Kim, H.; Lee, D., Nickel titanate nanofibers by electrospinning. Materials Chemistry and Physics 2004, 87 (1), 5-9.
    [66]Li, Y.; Zhan, S., Electrospun nickel oxide hollow nanostructured fibers. Journal of Dispersion Science and Technology 2009, 30 (2), 246-249.
    [67]Choi, S. S.; Lee, S. G.; Im, S. S.; Kim, S. H.; Joo, Y. L., Silica nanofibers from electrospinning/sol-gel process. Journal of materials science letters 2003, 22 (12), 891-893.
    [68]Zhang, Y.; He, X.; Li, J.; Miao, Z.; Huang, F., Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO< sub> 2</sub> nanofibers.
    Sensors and Actuators B: Chemical 2008, 132 (1), 67-73.
    [69]Dharmaraj, N.; Park, H.; Kim, C.; Viswanathamurthi, P.; Kim, H., Nanometer sized tantalum pentoxide fibers prepared by electrospinning. Materials Research Bulletin 2006, 41 (3), 612-619.
    [70]Li, D.; Xia, Y., Fabrication of titania nanofibers by electrospinning. Nano Letters 2003, 3 (4), 555-560.
    [71]Ban, C.; Chernova, N. A.; Whittingham, M. S., Electrospun nano-vanadium pentoxide cathode. Electrochemistry communications 2009, 11 (3), 522-525.
    [72]Wang, G.; Ji, Y.; Huang, X.; Yang, X.; Gouma, P. I.; Dudley, M., Fabrication and characterization of polycrystalline WO3 nanofibers and their application for
    ammonia sensing. The Journal of Physical Chemistry B 2006, 110 (47), 23777-23782.
    [73]Ren, H.; Ding, Y.; Jiang, Y.; Xu, F.; Long, Z.; Zhang, P., Synthesis and properties of ZnO nanofibers prepared by electrospinning. Journal of Sol-Gel Science and Technology 2009, 52 (2), 287-290.
    [74]Zhang, Z.; Li, X.; Wang, C.; Wei, L.; Liu, Y.; Shao, C., ZnO hollow nanofibers: fabrication from facile single capillary electrospinning and applications in gas sensors.
    The Journal of Physical Chemistry C 2009, 113 (45), 19397-19403.
    [75]Lin, D.; Wu, H.; Zhang, R.; Pan, W., Preparation of ZnS nanofibers via electrospinning. Journal of the American Ceramic Society 2007, 90 (11), 3664-3666.
    [76] Formo, E.; Camargo, P. H. C.; Lim, B.; Jiang, M.; Xia, Y., Functionalization of ZrO<sub>2</sub> nanofibers with Pt nanostructures: The effect of surface roughness on nucleation mechanism and morphology control. Chemical Physics Letters 2009, 476 (1), 56-61.
    [77]Moon, J.; Lee, S. J.; Park, J. A.; Zyung, T., Fabrication and characterization of semiconducting ZnO nanofibers for CO sensing. Electrochemical and solid-state
    letters 2009, 12, K63.
    [78]Wei, S.; Yu, Y.; Zhou, M., CO gas sensing of Pd-doped ZnO nanofibers synthesized by electrospinning method. Materials Letters 2010, 64 (21), 2284-2286.
    [79]Yanxia, L.; Caitian, G.; Xiaojun, P.; Xiuyun, A.; Yizhu, X.; Ming, Z.; Jie, S.; Hongliang, Z.; Zhaoyu, L.; Qin, Z.; Yonghai, Z.; Erqing, X., Synthesis and H2 sensing properties of aligned ZnO nanotubes. Applied surface science 2011, 257 (6), 2264-2268.
    [80]HORZUM, N.; TASCIGLU, D.; OKUR, S.; DEMIR, M. M., Humidity sensing properties of ZnO-based fibers by electrospinning. Talanta 2011, 85 (2), 1105-1111.
    [81] Qi, Q.; Zhang, T.; Wang, S.; Zheng, X., Humidity sensing properties of KCl-doped ZnO nanofibers with super-rapid response and recovery. Sensors and Actuators B: Chemical 2009, 137 (2), 649-655.
    [82]Zhang, H.; Li, Z.; Wang, W.; Wang, C.; Liu, L., Na+Doped Zinc Oxide Nanofiber Membrane for High Speed Humidity Sensor. Journal of the American Ceramic Society 2010, 93 (1), 142-146.
    [83]Yue, X. J.; Hong, T. S.; Xu, X.; Li, Z., High Performance Humidity Sensors Based on Double-Layer ZnO-TiO2 Nanofibers via Electrospinning. Chinese Physics Letters 2011, 28, 090701.
    [84]Zhao, M.; Wang, X.; Ning, L.; Jia, J.; Li, X.; Cao, L., Electrospun Cu-doped ZnO nanofibers for H2S sensing. Sensors and Actuators B: Chemical 2011, 156 (2), 588-592.
    [85]Wang, Y.; Jia, W.; Strout, T.; Schempf, A.; Zhang, H.; Li, B.; Cui, J.; Lei, Y., Ammonia Gas Sensor Using Polypyrrole?Coated TiO2/ZnO Nanofibers. Electroanalysis 2009, 21 (12), 1432-1438.
    [86]Lee, H. U.; Ahn, K.; Lee, S. J.; Kim, J. P.; Kim, H. G.; Jeong, S. Y.; Cho, C. R., ZnO nanobarbed fibers: Fabrication, sensing NO2 gas, and their sensing mechanism.
    Applied physics letters 2011, 98 (19), 193114-193114-3.
    [87]Park, J. A.; Moon, J.; Lee, S. J.; Kim, S. H.; Chu, H. Y.; Zyung, T., SnO2-ZnO hybrid nanofibers-based highly sensitive nitrogen dioxides sensor. Sensors and Actuators B: Chemical 2010, 145 (1), 592-595.
    [88]Yang, M.; Xie, T.; Peng, L.; Zhao, Y.; Wang, D., Fabrication and photoelectric oxygen sensing characteristics of electrospun Co doped ZnO nanofibres. Applied Physics A: Materials Science & Processing 2007, 89 (2), 427-430.
    [89]Wei, S.; Zhou, M.; Du, W., Improved acetone sensing properties of ZnO hollow nanofibers by single capillary electrospinning. Sensors and Actuators B: Chemical
    2011, 160 (1), 753-759.
    [90]Wu, W. Y.; Ting, J. M.; Huang, P. J., Electrospun ZnO Nanowires as Gas Sensors for Ethanol Detection. Nanoscale research letters 2009, 4 (6), 513-517.
    [91]Wang, W.; Li, Z.; Zheng, W.; Huang, H.; Wang, C.; Sun, J., Cr2O3-sensitized ZnO electrospun nanofibers based ethanol detectors. Sensors and Actuators B:
    Chemical 2010, 143 (2), 754-758.
    [92]Ahmad, M.; Pan, C.; Luo, Z.; Zhu, J., A Single ZnO Nanofiber-Based Highly Sensitive Amperometric Glucose Biosensor. The Journal of Physical Chemistry C 2010, 114 (20), 9308-9313.
    [93]Liu, L.; Zhong, Z.; Wang, Z.; Wang, L.; Li, S.; Liu, Z.; Han, Y.; Tian, Y.; Wu, P.; Meng, X., Synthesis, Characterization, and m-Xylene Sensing Properties of Co–ZnO
    Composite Nanofibers. Journal of the American Ceramic Society 2011, 94 (10), 3437-3441.
    [94]Song, X.; Zhang, D.; Fan, M., A novel toluene sensor based on ZnO-SnO2 nanofiber web. Applied surface science 2009, 255 (16), 7343-7347.
    [95]Song, X.; Wang, Z.; Liu, Y.; Wang, C.; Li, L., A highly sensitive ethanol sensor based on mesoporous ZnO–SnO2 nanofibers. Nanotechnology 2009, 20, 075501.
    [96]Wei, S.; Zhang, Y.; Zhou, M., Toluene sensing properties of SnO2–ZnO hollow nanofibers fabricated from single capillary electrospinning. Solid State Communications 2011, 151 (12), 895-899.
    [97]Zhu, Z.; Zhang, L.; Howe, J. Y.; Liao, Y.; Speidel, J. T.; Smith, S.; Fong, H., Aligned electrospun ZnO nanofibers for simple and sensitive ultraviolet nanosensors. Chem. Commun. 2009, (18), 2568-2570.
    [98]Zhang, W.; Zhu, R.; Liu, X.; Liu, B.; Ramakrishna, S., Facile construction of nanofibrous ZnO photoelectrode for dye-sensitized solar cell applications. Applied physics letters 2009, 95, 043304.
    [99]Yun, S.; Lim, S., Improved conversion efficiency in dye-sensitized solar cells based on electrospun Al-doped ZnO nanofiber electrodes prepared by seed layer treatment. Journal of Solid State Chemistry 2011, 184 (2), 273-279.
    [100]Hwang, S. H.; Song, J.; Jung, Y.; Kweon, O. Y.; Song, H.; Jang, J., Electrospun ZnO/TiO2 composite nanofibers as a bactericidal agent. Chemical Communications 2011, 47 (32), 9164-9166.
    [101]Wu, H.; Lin, D.; Zhang, R.; Pan, W., ZnO Nanofiber Field?Effect Transistor Assembled by Electrospinning. Journal of the American Ceramic Society 2008, 91 (2),
    656-659.
    [102]Qiu, Y.; Yu, J.; Zhou, X.; Tan, C.; Yin, J., Synthesis of Porous NiO and ZnO Submicro- and Nanofibers from Electrospun Polymer Fiber Templates. Nanoscale research letters 2009, 4 (2), 173-177.
    [103]Liu, H.; Yang, J.; Liang, J.; Huang, Y.; Tang, C., ZnO Nanofiber and Nanoparticle Synthesized Through Electrospinning and Their Photocatalytic Activity Under Visible Light. Journal of the American Ceramic Society 2008, 91 (4), 1287-1291.
    [104]Chen, Wen-Shiang, master thesis, National Cheng Kung University, Electrospun One-Dimensional Zinc Oxide Nanotubes. 2007.
    [105]Shie, Tzung-Ying, master thesis, National Cheng Kung University, Electrospun Titanium Dioxide Nanofibers for Hydrogen Production by UV-induced Water Splitting. 2007.
    [106]Chen, Yuan-Nie, master thesis, National Cheng Kung University, Light Propagation and Enhanced Photocatalytic Activities in Electrospun Titania Nanofibers. 2009.
    [107] Huang, Z.-M.; Zhang, Y. Z.; Kotaki, M.; Ramakrishna, S., A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology 2003, 63 (15), 2223-2253.
    [108]Ding, B.; Ogawa, T.; Kim, J.; Fujimoto, K.; Shiratori, S., Fabrication of a super-hydrophobic nanofibrous zinc oxide film surface by electrospinning. Thin Solid
    Films 2008, 516 (9), 2495-2501.

    無法下載圖示 校內:2017-09-04公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE