| 研究生: |
謝維昇 Hsieh, Wei-Sheng |
|---|---|
| 論文名稱: |
觸媒氣渦輪引擎原型之發展 Development of a Proto-type Catalytic Gas Turbine Engine |
| 指導教授: |
趙怡欽
Chao, Yei-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 觸媒氣渦輪引擎 、觸媒燃燒 、蜂巢式觸媒 、循環分析 |
| 外文關鍵詞: | catalytic gas turbine engine, catalytic combustion, cycle analysis, honeycomb catalyst |
| 相關次數: | 點閱:132 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著工商活動急遽成長與人民生活品質逐年提高,用電的需求量也快速增加,分散式發電(decentralized power)技術與管理已成為電力系統發展趨勢。另一方面,隨著航太工業發展至今氣渦輪引擎已趨向成熟,其具備體積小、重量輕、構造簡單、可靠度高等優點,相較於往復式引擎更適合用於分散式小型發電機組。
傳統氣渦輪引擎其燃燒室設計,前端主燃區維持火焰以接近當量燃燒,後端稀釋區則導入大量空氣作冷卻與調整溫度的設計;新一代氣渦輪引擎,燃燒室設計採用貧油預混(lean premixed combustion)與觸媒燃燒(catalytic combustion)技術,控制燃氣溫度分布並以較低的燃燒溫度抑制NOx的形成與排放。採用觸媒作為燃燒室的概念運用在氣渦輪引擎上,諸多文獻中都肯定利用觸媒駐焰貧油預混燃燒技術的低污染與高效率,觸媒燃燒室可在貧油情況下穩駐燃燒,低燃料濃度燃燒溫度低,毋需混入冷卻空氣進行冷卻,燃燒室出口溫度分布均勻,簡化燃燒室設計並且保護渦輪,有效改善目前氣渦輪燃燒室大部份的缺點。
本研究之觸媒氣渦輪引擎,即採用以觸媒作為燃燒室的概念運用在氣渦輪引擎上,研究目的在於觸媒氣渦輪引擎原型之發展,包括規劃、設計、製造與測試等方面;以現有氣渦輪引擎設計技術為基礎,透過循環分析對觸媒氣渦輪引擎作參數化分析,進行相關設計與規劃等工作,燃燒室以貴重金屬(Pt、Pd)蜂巢式觸媒作主體,燃料使用丙烷,以氫氣輔助點燃觸媒燃燒反應,利用市面上常見的渦輪增壓器,作為氣渦輪引擎之壓縮機與渦輪,以及搭配熱交換器將燃燒作功後的廢熱回收預熱空氣,可降低燃料消耗提高效率;完成整體氣渦輪引擎的設計與製造,並對各個元件包括觸媒燃燒室、渦輪增壓器與熱交換器等進行相關性能測試,逐步組裝建立一具完整的觸媒氣渦輪引擎,啟動並運轉以驗證觸媒氣渦輪引擎之可行性;新一代觸媒氣渦輪引擎改善目前氣渦輪燃燒室絕大部份的缺點,可作為小型發電機組的動力來源,未來更可朝向在分散式發電系統或備用發電系統的運用,使能源作更有效率的利用。
With the advancement of industry and civilization, the rapid growth of need in electric power is vigorous. Convenient and low-pollution decentralized power systems, which utilize advanced small-scale power plants, become one of the major development trends of electric power systems. On the other hand, with the advancement of the aerospace technology, gas turbine engine, with its characteristic advantages of small volume, light weight and simple structure, has become a potential candidate for use in this particular area of decentralized power system.
As the technology of lean premixed catalytic combustion is applied in the new generation gas turbine engines, the distribution of burnt gas temperature can be perfectly controlled with a reduced flame temperature and the consequently lower NOx emissions. Evidences in the literature have clearly showed that that catalyst enhances and stabilizes combustion possibly beyond the lean flammability limit with lean fuel and low combustion temperature and no dilution air is needed. Therefore, with the catalytic combustion, two major issues of conventional gas turbine combustors: complicated design and manufacture as well as ill pattern factor and hot spots in operation can be solved.
In this study, the development of a proto-type catalytic gas turbine engine is performed. Firstly, through cycle analysis major design parameters are identified and quantized and based on these parameters and conditions the components of the catalytic gas turbine engine are designed, manufactured and tested. For the catalytic combustor, noble metal(Pt、Pd)honeycomb packs are used. Propane is used as the primary fuel and hydrogen as the assisting fuel in the startup. An automobile turbocharger is used as the compressor and turbine of the engine. A regenerator is installed to use the waste heat to preheat the air at the combustor inlet. These components are carefully tested for their individual performance before integrating into the engine system. Start-up and operation tests of the developed catalytic gas turbine engine system are also performed to set-up the start-up and operation procedures. The results show that catalytic gas turbine engine improves the major defect of traditional gas turbine engines and could be used as the main core of small-scale power plants for decentralized or backup power systems for effective energy utilization.
Anson, D., Decorso, M., 1996, “Catalytic Combustion for Industrial Gas Turbines,” International Journal of Energy Research, Vol. 20 pp.693-711.
Brown, N. J., Schefer, R. W. and Robben, F., 1983, “High-Temperature Oxidation of H2 on a Platinum Catalyst,” Combustion and Flame, Vol. 51 pp.263-277.
Bond, G. C., 1987, “Heterogeneous Catalysis Principles and Applications,” 2nd edition, Oxford University Press, New York.
Bui, P. A., Vlachos, D. G., and Westmoreland, P. R., 1996, “Homogeneous Ignition of Hydrogen-Air Mixtures over Platinum”, Twenty-sixth Symposium (International) on combustion, The Combustion Institute, pp.1763-1770.
Beebe, K. W., Cairns, K. D., Pareek, V. K., Nickolas, S. G., Ozawa, Y., Fujii, T., Tochihara, Y., Kanazawa, T., and Sagimori, K., 1998, “Test results of a catalytic combustor for a gas turbine,” Catalysis Today, Vol. 45 pp.167-172.
Beebe, K. W., Cairns, K. D., Pareek,V. K., Nickolas, S. G., Schlatter, J. C., and Tsuchiya, T., 2000, “Development of catalytic combustion technology for single-digit emission from industrial gas turbine,” Catalysis Today, Vol. 59 pp.95-115.
Cho, P. and Law, C. K., 1986, “Catalytic Ignition of Fuel/Oxygen/Nitrogen Mixture over Platinum,” Combustion and Flame, Vol. 66 pp.159-170.
Cohen, H., Rogers, G.F.C., and Saravanamuttoo, H.I.H., 1996, “Gas Turbine Theory,” 4th edition, Longman Group Limited, U.K.
Cutrone, M. B., Beebe, K. W., Dalla Betta, R. A., Schlatter, J. C., Nickolas, S. G., and Tsuchiya, T., 1999, “Development of a catalytic combustor for a heavy-duty utility gas turbine,” Catalysis Today Vol.47 pp.391-398.
Carroni, R., Schmidt, V. and Griffin, T., 2002, “Catalytic combustion for power generation,” Catalysis Today, Vol. 75 pp.287-295.
Dalla Betta, R. A., Schlatter, J. C., Yee, D. K., Loffler, D. G., and Shoji, T., 1995, “Catalytic combustion technology to achieve ultra low NOx emissions: Catalyst design and performance characteristics,” Catalysis Today, Vol. 26 pp.329-335.
Dalla Betta, R. A., 1997, “Catalytic combustion gas turbine systems: the preferred technology for low emissions electric power production and co-generation,” Catalysis Today, Vol. 35 pp.129-135.
Deutschmann, O., Maier, L. I., Riedel, U., Stroemman, A. H. and Dibble, R. W., 2000, “Hydrogen assisted catalytic combustion of methane on platinum,” Catalysis Today, Vol. 59 pp.141-150.
Elrod, W. C., Durniak, J. D., and Taylor, L. E., 1981, “Hydrogen fueled catalytic combustor for low thrust expendable turbojet engine,” AIAA paper 81-1715.
Eguchi, K. and Arai, H., 1996, “Recent advances in high temperature catalytic combustion,” Catalysis Today, Vol. 29 pp.379-386.
Etemad, S., Karim, H., Smith, L. L. and Pfefferle, W. C., 1999, “Advanced technology catalytic combustor for high temperature ground power gas turbine applications,” Catalysis Today, Vol. 47 pp.305-313.
Fujii, T., Ozawa, Y., Kikumoto, S., Sato, M., Yuasa, Y., and Inoue, H., 1996, ”High Temperature Test Results of a Catalytic combustor for Gas Turbine,” ASME 96-GT-382.
Forzatti, P. and Groppi, G., 1999, “Catalytic combustion for the production of energy,” Catalysis Today, Vol. 54 pp.165-180.
Fernandes, N. E., Park, Y. K., and Vlachos, D. G., 1999, “The Auto-thermal Behavior of Catalyzed Hydrogen Oxidation: Experiments and Modeling,” Combustion and Flame, Vol. 118 pp.164-178.
Ganji, A., Branch, M. C., and Oppenheim, A. K., 1976, “Design study of a gas turbine combustor with recirculation,” AIAA paper 76-611.
Hayes, R. E., and Kolaczkowski, S. T., 1997, “Introduction to Catalytic Combustion,” Gordon and Breach Publishers.
Heppenstall, T., 1998, “Advanced gas turbine cycles for power generation: a critical review,” Applied Thermal Engineering, Vol. 18 pp.837-846.
Klvana, D., Chaouki, J., Guy, C., and Kirchnerova, J., 1996, “Catalytic Combustion: New Catalysts for New Technologies,” Combust. Sci. and Tech., Vol. 12 pp.51-65.
Lipinski, J. J., Brine, P. R., Buch, R. D., and Lester, G. R., 1998, “Development and Test of a Catalytic combustor for an Automotive Gas Turbine,” ASME 98-GT-390.
Mattingly, J. D., 1996, “Elements of Gas Turbine Propulsion,” McGraw-Hill Inc.
Ozawa, Y., Fujii, T., Sato, M., Kanazawa, T., and Inoue, H., 1999, “Development of a catalytically assisted combustor for a gas turbine,” Catalysis Today, Vol. 47 pp.399-405.
Pfefferle, W. C. and Pfefferle, L. D., 1986, “Catalytically Stabilized Combustion,” Prog. Energy Combust. Sci., Vol. 12 pp.25-41.
Pfefferle, L. D. and Pfefferle, W. C., 1987, “Catalysis Combustion,” Catal. Rev. -Sci. Eng., Vol. 29 pp.219-267.
Rosfjord, T. J., 1976, “Catalytic combustors for gas turbine engines,” AIAA paper 76-46.
Satterfield, C. N., 1991, “Heterogeneous Catalysis in Industrial Practice,” 2nd edition, McGraw-Hill Inc.
Schlegel, A., Benz, P., Griffin, T., Weisenstein W., and Bockhorn, H., 1996, “Catalytic Stabilization of Lean Premixed Combustion: Method for Improving NOx Emissions,” Combustion and Flame, Vol. 105 pp.332-340.
Sadamori, H., 1999, “Application concepts and evaluation of small-scale catalytic combustors for natural gas,” Catalysis Today, Vol. 47 pp.325-338.
Takeuchi M., and Konno, J., 1997, “Experimental Analysis of C3H8 Catalytic Combustion in a Honeycomb Monolith Pt Catalyst,” Proc. The First Asia-Pacific Conference on Combustion, Osaka, pp.555-558.
T’ien, J. S., 1980, “Catalytic Honeycomb combustor: Steady- state model and comparison with experiment,” AIAA paper 80-1289.
許紘瑋, 1998, “觸媒穩駐燃燒之初步研究,” 國立成功大學航空太空工程研究所碩士論文.
蔡銘晃, 2000, “小型氣渦輪引擎觸媒燃燒室之設計,” 國立成功大學航空太空工程研究所碩士論文.