簡易檢索 / 詳目顯示

研究生: 吳健瑋
Wu, Chien-Wei
論文名稱: 自旋軌道耦合與磁場調和之近藤效應
Kondo Effect Mediated by Spin-Orbit Interaction and Magnetic Field
指導教授: 陳則銘
Chen, Tse-Ming
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 37
中文關鍵詞: 自旋軌道耦合近藤效應非尋常零偏壓效應
外文關鍵詞: spin-orbit interaction, the Kondo effect, zero bias anomaly
相關次數: 點閱:102下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自旋是電子的一個量子自由度。自旋在物理的許多領域被廣泛研究,其在電子元件的應用更是建構下一世代電子科技的基石,因此,了解與學習如何在固態系統操控電子自旋是十分重要的,而這也是我們實驗的主要目標。
    在自旋相關的物理研究中有兩個值得關注的議題,其分別為近藤效應與自旋軌道耦合。近藤效應的自旋翻轉機制源自於海森堡測不準原理以及局域性自旋和導電電子所形成的強關聯單態;自旋軌道耦合在相對論性的考量下結合了電子自旋以及運行的關係,並實現了以全電性的方式控制電子自旋。在我們的實驗中,兩個重要的物理在一維系統中首次被同時研究以及探討。
    非尋常零偏壓效應是近藤效應的一個指標性特徵,單峰以及雙峰非尋常零偏壓效應均在零磁場的情況下被量測到,我們將零磁場雙峰非尋常零偏壓效應歸因於自旋軌道耦合的貢獻。再者,隨著外加磁場的變化,零磁場雙峰非尋常零偏壓效應有著雙、單、雙的演化現象,我們也因此提出一個簡單的物理圖像解釋這個磁場相關的演化。

    Spin, a quantum degree of freedom of electrons, is widely studied in many field of physics and its application in electronics devices is one strong candidate for being the
    cornerstone of the next-generation electronics technology. Therefore, it is essential to understand and learn to manipulate the spin dynamics in solid-state systems, both of which are the main focuses of this work.
    Kondo effect[1] and spin-orbit interaction[2] are both fantastic physics that is related to spins. Kondo effect enhances the "spin-flip" process with the formation of
    singlet state between the unpaired localized spins and conducting electrons. Spin-orbit interaction couples the electron's spin and its orbital motion, opening a gateway to the control of electron spin in a purely electrical manner. In our experiment, we combine the Kondo effect and spin-orbit interaction in a one-dimensional system.
    Both single-peak zero bias anomaly (ZBA)[3], an hallmark of the Kondo effect, and double-peak ZBA appear at zero magnetic field. We attribute the zero-field double-peak
    ZBA to the presence of spin-orbit interaction. Furthermore, an evolution from double- to single- and then back to double-peak ZBA are seen when we applied an in-plane magnetic field. Here we present a simple picture to explain this field-dependent evolution.

    1 Introduction 1 2 Theoretical Background 3 2.1 Physics in Low-Dimensional Systems . . . . . . . . . . . . . . . . . . . 3 2.1.1 Two-Dimensional Electron Gas System (2DEG) . . . . . . . . . 3 2.1.2 Transport in One-Dimensional System . . . . . . . . . . . . . . 5 2.2 Spin-orbit interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 Rashba spin-orbit interaction . . . . . . . . . . . . . . . . . . . 9 2.3 The Kondo e ect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.1 Kondo e ect in mesoscopic quantum dots . . . . . . . . . . . . . 12 2.3.2 Kondo e ect in quantum point contacts . . . . . . . . . . . . . 14 3 Experiment Set-up 17 3.1 Cryostats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 QPC Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2.1 Wafer Property . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2.2 Device Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3 Measurement Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4 Experiment Results 22 4.1 Kondo E ect in a 1D System with SOI . . . . . . . . . . . . . . . . . . 22 4.1.1 Quantization of 1D Conductance . . . . . . . . . . . . . . . . . 22 4.1.2 Splitting of Zero-Bias Peaks in the Absence of External Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.1.3 Possible Origin of the Splitting of ZBA - The Two-impurity Kondo system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2 Magnetic Field Dependence of the Kondo E ect in the 1D System with SOI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2.1 Zeeman Modulation Using an In-Plane Magnetic Field Parallel to Spin-Orbit Field . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2.2 An In-Plane Magnetic Field Transverse to Spin-Orbit Field . . . 32 5 Conclusion 34 5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Bibliography 36

    [1] J. Kondo, “Resistance Minimum in Dilute Magnetic Alloys”, Prog. Theor. Phys. 32, 37 (1964)
    [2] R. Winkler, “Spin-orbit coupling effects in two-dimensional electron and hole systems”, Springer (2003)
    [3] D. Goldhaber-Gordon et al., “Kondo effect in a single-electron transistor”, Nature 391, 156 (1998)
    [4] S.C. Zhang et al. “Quantum spin Hall effect and topological phase transition in HgTe quantum wells” , Science 314, 1757 (2006)
    [5] S.M. Cronenwett et al. “Low-Temperature Fate of the 0.7 Structure in a Point Contact: A Kondo-like Correlated State in an Open System” , Phys. Rev. Lett. 88, 226805
    [6] T.-F. Fang, “Kondo Effect in Carbon Nanotube Quantum Dots with Spin-Orbit Coupling” , Phys. Rev. Lett. 101, 246805 (2008)
    [7]S.M. Cronenwett, “Coherence, charging, and spin effects in quantum dots and quantum point contacts” , PhD thesis, Stanford University (2001)
    [8] K. Berggren et al. “New directions with fewer dimensions” , Physics World 15, 37
    [9] T.-M Chen et al. “Mesoscopic physics” , Lecture note
    [10] T.-M Chen “Electron-electron interaction in GaAs quantum wires”, PhD thesis, university of Cambridge (2009)
    [11] E. Rashba, “ Properties of semiconductors with an extremum loop. 1. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop” , Sov. Phys. Solid State 2, 1109–1122 (1960)
    [12] J. Sinova, “Universal intrinsic spin Hall effect” , Phys. Rev. Lett. 92, 126603 (2004)
    [13] P.W. Anderson, “Localized magnetic states in metals” , Phys. Rev.124, 41 (1961)
    [14] L. Kouwenhoven, “Revival of the Kondo effect” , Physics World (2001)
    [15] P. Chuang, “All-eletric all-semiconductor spin-field effect transistors” , Nature Nanotechnology 10, 35 (2015)
    [16] T.-M Chen et al. “Bias-controlled spin polarization in quantum wires” , Appl. Phys. Lett. 93, 032102 (2008)
    [17] M.J. Iqbal et al. “Odd and even Kondo effects from emergent localization in quantum point contacts” , Nature 501, 79(2013)
    [18] C.H.L. Quay, “Observation of a one-dimensional spin-orbit gap in a quantum wire” , Nature physics 6, 336 (2010)
    [19] H.C. Koo, “Control of spin precession in a spin-injected field effect transistor” , Science 18, 1515 (2009)
    [20] T.-M Chen, “All-elcetrical injection and detection of a spin-polarized current using 1D conductors” , Phys. Rev. Lett.109, 177202 (2012)

    下載圖示 校內:2019-08-01公開
    校外:2019-08-01公開
    QR CODE