簡易檢索 / 詳目顯示

研究生: 曾昱
Tseng, Andrew
論文名稱: 中低型鋼筋混凝土結構牆性能化設計參數之研究
Parameters for Performance Based Design of Mid- and Low-Rise RC Structural Walls
指導教授: 洪崇展
Hung, Chung-Chan
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 131
中文關鍵詞: 性能化設計法性能極限狀態3D 模型有限元素法
外文關鍵詞: Performance based design, limit state, 3D model, FE analysis
相關次數: 點閱:75下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今的地震設計法以強度設計法為主,其缺點在於其無法準確預測地震響應。因此人們開始發展性能化設計法,該法將預先設定的結構性能目標配合不同的地震層級當作設計依據。性能化設計的關鍵在於是否能準確定的定義性能極限狀態,並且必須要能適用於不同設計參數的建築物。本研究的目標是提出RC結構牆的位移預測模型,並與結構性能目標結合。本文首先將定義不同的性能目標以及性能極限狀態。接下來建立移預測模型,此步驟必須仰賴有限軟體產生大量不同設計參數的模型牆,並進行地震模擬以得到數據。最後將數據進行回歸,得到位移預測模型,並與現有的結構牆受反覆載重的實驗數據進行驗證。

    The current building design codes are generally based on a strength-based design philosophy. A building designed according to such approaches has unpredictable seismic responses. Performance-based design approaches, which are recognized as advanced design methods for the next generation, allow engineers to design a building with the pre-determined structural performance objectives under varying seismic hazard levels. A key element to a successful performance-based design is an adequately defined framework of performance limit states. In addition, a direct approach to accurately identify the performance limit states of structures with different designs is also necessary when implementing the performance-based design. The object of this article is to propose a model for predicting the displacement demands associated with the performance limit states of RC structural walls. The model is developed using regression analysis on the extensive seismic responses obtained using 3D finite element RC structural wall models. Existing experimental results of RC structural walls under cyclic loading are employed to validate the proposed model. The comparisons between the experimental results and the predicted solutions show good agreements.

    Abstract i Acknowledgments iii Table of Contents v List of Tables vii List of Figures viii CHAPTER1 Introduction 1 1.1 Background 1 1.2 Scope and Objective 1 1.3 Thesis Organization 1 CHAPTER2 Literature Review 3 2.1 Behaviors of Shear Walls 3 2.1 Monotonic and Cyclic Loading 4 2.3 Displacement-Based Design and Force-based Design 5 2.4 Performance objectives and Damage Assessment 8 2.5 Plastic hinge length 12 CHAPTER3 Analytical Framework 17 3.1 Parametric study 17 3.1.1 Wall Geometry and Boundary Conditions 18 3.1.2 Material model 18 3.1.3 Mesh details and load progress 21 3.2 Verification of FE models 22 CHAPTER4 Analytical Results 28 4.1 Crack pattern 28 4.2 Damage characteristics 30 4.2.1 Concrete cover spalling 30 4.2.2 Buckling 31 4.2.3 Failure mode 32 4.3 Load-Displacement response 33 4.3.1 Stiffness 33 4.3.2 Peak strength 33 4.3.3 Ductility 34 4.4 Special case discussion 35 CHAPTER5 Establishment of correlation between global and local behaviors for RC shear walls 37 5.1 Design variables of shear walls 37 5.2 Displacement Based Design of RC Shear walls using target material strain as criteria 37 5.2.1 The Damage Control limit –Incipient spalling of concrete 38 5.2.2 The Life Safety limit state –Extensive spalling of concrete 39 5.2.3 The Collapse Prevention level –ultimate state 41 5.5 correlation between drift demands and local material damages 41 5.3.1 Secant Stiffness 43 5.3.2 Validation of the prediction model 45 5.3.3 Example RC shear wall 51 CHAPTER6 Plastic Hinge 60 6.1 Methodology 60 6.2 Verification of Plastic Hinge Length 62 CHAPTER7 Conclusion 65 Reference 67 Appendix 72 Appendix A 72 Appendix B 73 Appendix C 82 Appendix D 117 Appendix E 122 Appendix F 130

    [1] T. N.Salonikios, A. J.Kappos, I. aTegos, andG. G.Penelis, 尼Cyclic Load Behavior of Low-Slenderness Reinforced Concrete Walls?: Failure Modes , Strength and Deformation Analysis , and Design Implications,巨 ACI Struct. J., no. 96, pp. 132冬142, 2000.
    [2] C.Sittipunt, S. L.Wood, P.Lukkunaprasit, andP.Pattararattanakul, 尼Cyclic behavior of reinforced concrete structural walls with diagonal web reinforcement,巨 Struct. J., vol. 98, no. 4, pp. 554冬562, 2001.
    [3] R. G.Oesterle, A. E.Fiorato, L. S.Johal, J. E.Carpenter, H. G.Russell, andW. G.Corley, 尼Earthquake resistant structural walls - Tests of isolated walls,巨 1976.
    [4] P. A.Hidalgo, C. A.Ledezma, andR. M.Jordan, 尼Seismic behavior of squat reinforced concrete shear walls,巨 Earthq. Spectra, vol. 18, no. 2, pp. 287冬308, 2002.
    [5] Y.Zhang andZ.Wang, 尼Seismic behavior of reinforced concrete shear walls subjected to high axial loading,巨 ACI Struct. J., vol. 97, no. 5, pp. 739冬750, 2000.
    [6] C.-C.Hung andS.El-Tawil., 尼Seismic Behavior of a Coupled Wall System with HPFRC Materials in Critical Regions,巨 ASCE, vol. 137, no. 12, pp. 1499冬1507, 2011.
    [7] C.-C.Hung andW.-T.Lu., 尼Tall hybrid coupled structural walls: seismic behavior and design suggestions,巨 Int. J. Civ. Eng., 2017.
    [8] C.-C.Hung, H.Li, andH.-C.Chen, 尼High-strength Steel Reinforced Squat UHPFRC Shear Walls: Cyclic Behavior and Design Implications,巨 Eng. Struct., vol. 141, pp. 59冬74, 2017.
    [9] C.-C.Hung andY.-F.Su., 尼On Modeling Coupling Beams Incorporating Strain-hardening Cement-based Composites,巨 Comput. Concr., vol. 12, no. 4, pp. 243冬259, 2013.
    [10] C.-C.Hung andW.-T.Lu., 尼Towards achieving the desired seismic performance for hybrid coupled structural walls,巨 Earthquakes Struct., vol. 9, no. 6, pp. 1251冬1272, 2015.
    [11] C.-C.Hung andW.-T.Lu., 尼A Performance-Based Design Method for Coupled Wall Structures,巨 J. Earthq. Eng., pp. 1冬25, 2016.
    [12] C.-C.Hung, Y.-F.Su, andK.-H.Yu., 尼Modeling the Shear Hysteretic Response for High Performance Fiber Reinforced Cementitious Composites.,巨 Constr. Build. Mater., vol. 41, pp. 37冬48, 2013.
    [13] C.-C.Hung andS.-H.Li., 尼Three-dimensional Model for Analysis of High Performance Fiber Reinforced Cement-based Composites,巨 Compos. Part B Eng., vol. 45, pp. 1441冬1447, 2013.
    [14] C.-C.Hung andW.-M.Yen., 尼Experimental evaluation of ductile fiber reinforced cement-based composite beams incorporating shape memory alloy bars,巨 Procedia Eng., vol. 79, pp. 506冬512, 2014.
    [15] C.-C.Hung, 尼Modified Full Operator Hybrid Simulation Algorithm and its Application to the Seismic Response Simulation of a Composite Coupled Wall System,巨 J. Earthq. Eng., vol. 16, no. 6, pp. 759冬776, 2012.
    [16] C.-C.Hung, W.-M.Yen, andK.-H.Yu., 尼Vulnerability and Improvement of Reinforced ECC Flexural Members under Displacement Reversals: Experimental Investigation and Computational Analysis,巨 Constr. Build. Mater., vol. 107, pp. 287冬298, 2016.
    [17] C.-C.Hung andS.El-Tawil, 尼Hybrid Rotating/Fixed-Crack Model for High Performance Fiber Reinforced Cementitious Composites,巨 ACI Mater. J., vol. 107, no. 6, pp. 569冬577, 2010.
    [18] C.-C.Hung, Y.-F.Su, andH.-H.Hung., 尼Impact of natural weathering on medium-term self-healing performance of fiber reinforced cementitious composites with intrinsic crack-width control capability,巨 Cem. Concr. Compos., vol. 80, pp. 200冬209, 2017.
    [19] C.-C.Hung andY.-F.Su., 尼Medium-term self-healing evaluation of Engineered Cementitious Composites with varying amounts of fly ash and exposure durations,巨 Constr. Build. Mater., vol. 118, pp. 194冬203, 2016.
    [20] C.-C.Hung andY.-S.Chen, 尼Innovative ECC Jacketing for Retrofitting Shear-Deficient RC Members,巨 Constr. Build. Mater., vol. 111, pp. 408冬418, 2016.
    [21] C.-C.Hung andC.-Y.Chueh., 尼Cyclic Behavior of UHPFRC Flexural Members Reinforced with High-Strength Steel Rebar,巨 Eng. Struct., vol. 122, pp. 108冬120, 2016.
    [22] I. D.Lefas andM. D.Kotsovos, 尼Strength and deformation characteristics or reinforced concrete walls under load reversals,巨 ACI Struct. J., vol. 87, no. 6, pp. 716冬726, 1990.
    [23] R. T.Ranf, J. M.Nelson, Z.Price, M. O.Eberhard, andJ. F.Stanton, 尼Damage Accumulation in Lightly Confined Reinforced Concrete Bridge Columns,巨 2006.
    [24] J.Goodnight, M.Kowalsky, andJ.Nau, 尼Effect of Load History on Performance Limit States of Circular Bridge Columns,巨 J. Bridg. Eng., vol. 18, no. 12, 2013.
    [25] M. J. N.Priestley, G.Calvi, andM.Kowalsky, 尼Displacement-Based Seismic Design of Structure,巨 no. Xxx, pp. 1冬23, 2007.
    [26] M. J. N.Priestley, Myths and Fallacies in Earthquake Engineering , Revisited The Ninth Mallet Milne Lecture , 2003, no. May. 2003.
    [27] FEMA, 尼Prestandard and Commentary for the Seismic Rehabilitation of Buildings,巨 FEMA-356, no. 1. pp. 1冬518, 2000.
    [28] SEAOC, 尼Recommended Lateral Force Requirements and Commentary,巨 1960.
    [29] SEAOC, 尼VISION 2000 - Performance Based Seismic Engineering of Buildings,巨 vol. I. 1995.
    [30] R.Pekelnicky andC.Poland, 尼ASCE 41-13: Seismic Evaluation and Retrofit Rehabilitation of Existing Buildings,巨 Citeseer, pp. 1冬12, 2012.
    [31] Y. D.Hose andF.Seible, 尼Performance Evaluation Database for Concrete Bridge Components Concrete Bridge Components and Systems under Simulated Seismic Loads,巨 EERI Earthq. Spectra, vol. 16, no. 2, pp. 413冬442, 2000.
    [32] A.Babazadeh, R.Burgueno, andP. F.Silva, 尼Use of 3D Finite-Element Models for Predicting Intermediate Damage Limit States in RC Bridge Columns,巨 J. Struct. Eng., vol. 141, no. 10, 2015.
    [33] H.Choi andY.Nakano, 尼Residual Seismic Performance Of Rc Frames With Unreinforced Masonry Infill,巨 14th World Conf. Earthq. Eng., vol. 2, 2008.
    [34] R.Park, M. J. N.Priestley, andW. D.Gill, 尼Ductility of square confined concrete columns,巨 J. Struct. Div. ASCE, vol. 108, no. 4, pp. 929冬950, 1982.
    [35] M. J. N.Priestley andR.Park, 尼Strength and Ductility of Concrete Bridge Columns Under Seismic Loading,巨 ACI Struct. J., vol. 84, no. 1, pp. 61冬76, 1987.
    [36] T.Paulay andM. J. N.Priestley, Seismic Design of Reinforced Concrete and Masonry Buildings. 1977.
    [37] A. H.Mattock, 尼Rotational Capacity of Hinging Regions in Reinforced Concrete Beams,巨 Spec. Publ., vol. 12, no. 9, pp. 143冬181, 1965.
    [38] S.Bae andO.Bayrak, 尼Plastic hinge length of reinforced concrete columns,巨 ACI Struct. J., vol. 105, no. 3, pp. 290冬300, 2008.
    [39] I.Kazaz, 尼Analytical Study on Plastic Hinge Length of Structural Walls,巨 J. Struct. Eng., vol. 139, no. 11, pp. 1938冬1950, 2013.
    [40] R.-D.Yeh, 尼Experiment Research of High-Rise Reinforced Concrete Framde-Shearwalls Interaction.,巨 National Cheng Kung University, 2002.
    [41] M.-S.Yu, 尼Experiment Research of Low-Rise Reinforced Concrete Framed-Shear walls Interaction.,巨 National Cheng Kung University, 2002.
    [42] G. J.Parra-Montesinos, B. A.Canbolat, andG. R.Jeyaraman, 尼Relaxation of Confinement Reinforcement Requirements in Structural Walls Through the Use of Fiber Reinforced Cement Composites,巨 in 8th US national conference on earthquake engineering, 2006.
    [43] Y.Murray, 尼Users Manual for LS-DYNA Concrete Material Model 159,巨 Fed. Highw. Adm., no. May, p. 77, 2007.
    [44] R. D.Krieg andS. W.Key, 尼Implementation of a time independent plasticity theory into structural computer programs,巨 ASME, vol. 20, 1976.
    [45] R. P.Dhakal andK.Maekawa, 尼Modeling for Postyield Buckling of Reinforcement,巨 J. Struct. Eng., vol. 128, no. 9, pp. 1139冬1147, 2002.
    [46] M. J. N.Priestley, 尼Performance based seismic design,巨 12th WCEE, vol. 1, no. 1, pp. 1冬22, 2000.
    [47] T.Belytschko andL. P.Bindeman, 尼Assumed strain stabilization of the eight node hexahedral element,巨 Comput. Methods Appl. Mech. Eng., vol. 105, no. 2, pp. 225冬260, 1993.
    [48] The Japan Building Disaster Prevention Association (JBDPA), 尼Guideline for Post-earthquake Damage Evaluation and Rehabilitation.巨 1991.
    [49] R. J.Frosch, 尼Another look at cracking and crack control in reinforced concrete,巨 ACI Struct. J., vol. 96, no. 3, pp. 437冬442, 1999.
    [50] B. B.Broms, 尼Crack width and crack spacing in reinforced concrete members,巨 Am. Concr. Inst. -- J., vol. 62, no. 10, pp. 1237冬1256, 1965.
    [51] A.Birely, D.Lehman, L.Lowes, D.Kuchma, C.Hart, andK.Marley, 尼Investigation of the Seismic Behavior and Analysis of Reinforced Concrete Structural Walls,巨 14 th World Conf. Earthq. Eng. Oct. 12-17, 2008, Beijing, China, 2008.
    [52] A.Athanasopoulou, 尼Shear strength and drift capacity of reinforced concrete and high-performance fiber reinforced concrete low-rise walls subjected to displacement reversals,巨 ProQuest Diss. Theses, p. 316, 2010.
    [53] K.Pilakoutas and aElnashai, 尼Cyclic behavior of reinforced concrete cantilever walls, Part I: Experimental results,巨 ACI Struct. J., vol. 92, no. 3, pp. 271冬281, 1995.
    [54] J. H.Thomsen IV andJ. W.Wallace, 尼Displacement-Based Design of Slender Reinforced Concrete Structural Walls 出 Experimental Verification,巨 J. Struct. Eng. ASCE, vol. 130, no. 4, pp. 618冬630, 2004.
    [55] S.El-Tawil andC. M.Kuenzli, 尼Pushover of Hybrid Coupled Walls. II: Analysis and Behavior,巨 J. Struct. Eng., vol. 128, no. 10, pp. 1282冬1289, 2002.
    [56] D. N.Grant, C. A.Blandon, andM. J. N.Priestley, 尼Modelling inelastic response in direct displacement-based seismic design.,巨 Rept.No.2004/02 Eur. Sch. Adv. Stud. Reduct. Seism. Risk, Pavia., p. 2004, 2004.
    [57] A.Hemmati, A.Kheyroddin, andM. K.Sharbatdar, 尼Plastic Hinge Rotation Capacity of Reinforced HPFRCC Beams,巨 J. Struct. Eng., vol. 141, no. 2, p. 4014111, 2015.
    [58] E. M.Hines, J. I.Restrepo, andF.Seible, 尼Force-displacement characterization of well-confined bridge piers,巨 ACI Struct. J., vol. 101, no. 4, pp. 537冬548, 2004.
    [59] A.Dazio, K.Beyer, andH.Bachmann, 尼Quasi-static cyclic tests and plastic hinge analysis of RC structural walls,巨 Eng. Struct., vol. 31, no. 7, pp. 1556冬1571, 2009.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE